
3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 1/48

731

remember me reset password login

search

this post was submitted on 15 Feb 2020

731 points (97% upvoted)

shortlink: https://redd.it/f47x4o

username password

cpp
join 126,704 readers

2,788 users here now
Discussions, articles, and news about the C++
programming language or programming in C++.

For C++ questions, answers, help, and advice see
r/cpp_questions or StackOverflow.

2020-02 Prague ISO C++ Committee Trip Report —
� C++20 is Done! � (self.cpp)
submitted 1 month ago * by blelbach
NVIDIA | ISO C++ Library Incubator Chair | ISO C++ Tooling Chair

Submit a new link

Submit a new text post

Get an ad-free experience with special
benefits, and directly support Reddit.

Get Reddit Premium

×

A very special video report from Prague.

C++20, the most impactful revision of C++ in a
decade, is done! ���

At the ISO C++ Committee meeting in Prague, hosted by
Avast, we completed the C++20 Committee Draft and
voted to send the Draft International Standard (DIS) out
for final approval and publication. Procedurally, it's
possible that the DIS could be rejected, but due to our
procedures and process, it's very unlikely to happen. This
means that C++20 is complete, and in a few months the
standard will be published.

During this meeting, we also adopted a plan for C++23,
which includes prioritizing a modular standard library,
library support for coroutines, executors, and networking.

A big thanks to everyone who made C++20 happen - the
proposal authors, the minute takers, the implementers,
and everyone else involved!

This was the largest C++ committee meeting ever - 252
people attended! Our generous host, Avast, did an
amazing job hosting the meeting and also organized a
lovely evening event for everyone attending.

This week, we made the following changes and additions
to the C++20 draft:

Improved the context-sensitive recognition of
'module' and 'import' to make it easier for non-
compiler tools such as build systems to determine
build dependencies.
Added several new rangified algorithms.
Added ranges::ssize .

BECOME A REDDITOR

Where a community about
your favorite things is waiting
for you.

and

subscribe

 CPP comments

POPULAR - ALL - RANDOM - USERS | ASKREDDIT - WORLDNEWS - PICS - FUNNY - VIDEOS - GAMING - AWW - MOVIES - TODAYILEARNED - EMY SUBREDDITS MORE »

Want to join? Log in or sign up in seconds. | English

https://old.reddit.com/password
https://old.reddit.com/premium
https://old.reddit.com/r/cpp/
http://reddit.com/r/cpp_questions
http://stackoverflow.com/
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/
https://old.reddit.com/r/cpp/
https://old.reddit.com/user/blelbach
https://old.reddit.com/r/cpp/gilded
https://old.reddit.com/r/cpp/submit
https://old.reddit.com/r/cpp/submit?selftext=true
https://youtu.be/AvPiGstxV_g
https://www.avast.com/
https://wg21.link/P0592
https://i.imgur.com/umP0qke.jpg
https://www.avast.com/
https://wg21.link/P1857
https://wg21.link/p1243
https://wg21.link/p1970
https://old.reddit.com/login
https://old.reddit.com/
https://old.reddit.com/r/cpp/
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/
https://old.reddit.com/r/popular/
https://old.reddit.com/r/all/
https://old.reddit.com/r/random/
https://old.reddit.com/users/
https://old.reddit.com/r/AskReddit/
https://old.reddit.com/r/worldnews/
https://old.reddit.com/r/pics/
https://old.reddit.com/r/funny/
https://old.reddit.com/r/videos/
https://old.reddit.com/r/gaming/
https://old.reddit.com/r/aww/
https://old.reddit.com/r/movies/
https://old.reddit.com/r/todayilearned/
https://old.reddit.com/r/explainlikeimfive/
https://old.reddit.com/subreddits/
https://www.reddit.com/login
https://www.reddit.com/login
javascript:void(0)

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 2/48

message the moderators

a community for 11 years

Get Started
The C++ Standard Home has a nice getting started
page.

Videos
The C++ standard committee's education study group
has a nice list of recommended videos.

Reference
cppreference.com

Books
There is a useful list of books on Stack Overflow. In
most cases reading a book is the best way to learn C++.

MODERATORS
IAmBabau
Verroq
pointfree
rectal_smasher_2000
STL MSVC STL Dev
cleroth Game Developer
blelbach
NVIDIA | ISO C++ Library Incubator Chair | ISO
C++ Tooling Chair
BotTerminator

about moderation team »

Show all links

Filter out CppCon links

Show only CppCon links

Refined the meaning of 'static' and 'inline' in
module interfaces (P1779 and P1815).
Resolved a lot of open core language and library
issues and made many substantial improvements
to specification.

The following notable features are in C++20:

Modules.
Coroutines.
Concepts.
Ranges.
constexpr ification: constinit ,
consteval ,
std::is_constant_evaluated ,
constexpr allocation, constexpr
std::vector , constexpr
std::string , constexpr union ,
constexpr try and catch ,
constexpr dynamic_cast and typeid .
std::format("For C++{}", 20) .
operator<=> .

Feature test macros.
std::span .

Synchronized output.
std::source_location .
std::atomic_ref .
std::atomic::wait ,
std::atomic::notify , std::latch ,
std::barrier ,
std::counting_semaphore , etc.
std::jthread and std::stop_* .

ABI Discussion

We had a very important discussion about ABI stability
and the priorities of C++ this week in a joint session of
the Language Evolution and Library Evolution group.

Although there was strong interest in exploring how to
evolve ABI in the future, we are not pursuing making
C++23 a clean ABI breaking release at this time. We did,
however, affirm that authors should be encouraged to
bring individual papers for consideration, even if those
would be an ABI break. Many in the committee are
interested in considering targeted ABI breaks when that
would signify significant performance gains.

https://old.reddit.com/message/compose?to=%2Fr%2Fcpp
http://isocpp.org/
http://isocpp.org/get-started
https://www.cjdb.com.au/sg20-and-videos
http://en.cppreference.com/w/
http://stackoverflow.com/questions/388242/the-definitive-c-book-guide-and-list
https://old.reddit.com/user/IAmBabau
https://old.reddit.com/user/Verroq
https://old.reddit.com/user/pointfree
https://old.reddit.com/user/rectal_smasher_2000
https://old.reddit.com/user/STL
https://old.reddit.com/user/cleroth
https://old.reddit.com/user/blelbach
https://old.reddit.com/user/BotTerminator
https://old.reddit.com/r/cpp/about/moderators
http://www.reddit.com/r/cpp/#all
http://nc.reddit.com/r/cpp/#nc
http://oc.reddit.com/r/cpp/#oc
https://wg21.link/P1779
https://wg21.link/P1815
https://en.cppreference.com/w/cpp/language/modules
https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/concepts
https://en.cppreference.com/w/cpp/ranges
https://wg21.link/P1143
https://wg21.link/P1073
https://wg21.link/P0595
https://wg21.link/P0784
https://wg21.link/P1004
https://wg21.link/P0980
https://wg21.link/P1330
https://wg21.link/P1002
https://wg21.link/P1327
https://wg21.link/P0645
https://en.cppreference.com/w/cpp/utility#Relational_operators_and_comparison
https://en.cppreference.com/w/cpp/feature_test
https://en.cppreference.com/w/cpp/container/span
https://en.cppreference.com/w/cpp/io#Synchronized_output
https://wg21.link/P1208
https://en.cppreference.com/w/cpp/atomic/atomic_ref
https://wg21.link/P1135
https://wg21.link/P0660
https://wg21.link/P1863

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 3/48

‟How many C++ developers does it take to change a
lightbulb?” — @tvaneerd

‟None: changing the light bulb is an ABI break.” —
@LouisDionne

Language Progress

Evolution Working Group Incubator (EWGI)
Progress

The EWG Incubator met for three days in Prague and
looked at and gave feedback to 22 papers for C++23. 10
of those papers were forwarded to Evolution, possibly
with some revisions requested. Notably:

Guaranteed copy elision for named return objects
Generalized pack declaration and usage
Member templates for local classes
Object relocation in terms of move plus destroy

Several papers received a lot of feedback and will return
to the Incubator, hopefully in Varna:

A pipeline-rewrite operator
Universal template parameters
Partially mutable lambda captures
C++ should support just-in-time compilation
move = bitcopies

Notably, the proposed epochs language facility received
no consensus to proceed. One significant problem
pointed out was that in a concepts and modules world,
we really cannot make any language changes that may
change the satisfaction of a concept for a set of types. If
one TU thinks C<T> is true, but another TU in a later
epoch thinks C<T> is false, that easily leads to ODR
violations. Many of the suggested changes in the paper
run afoul of this problem. However, we’re interested in
solving the problem, so welcome an alternative approach.

Evolution Working Group (EWG) Progress

The top priority of EWG was again fixing the final national
body comments for C++20. Once that was done, we
started looking at C++23 papers. We saw a total of 36
papers.

Papers of note:

We adopted the C++ IS schedule.
We adopted a plan for C++23.

https://twitter.com/tvaneerd/status/1060646821247119360
https://twitter.com/LouisDionne/status/1062724316905775106
https://wg21.link/p2025
https://wg21.link/P1858
https://wg21.link/p2044
https://wg21.link/p1144
https://wg21.link/P2011
https://wg21.link/P1985
https://wg21.link/p2034
https://wg21.link/p1609
https://wg21.link/P1029
https://wg21.link/p1881
https://wg21.link/P1000
https://wg21.link/P0592

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 4/48

We adopted a process for evolutionary proposals,
to make sure that we reduce the chance that we’ll
make mistakes
We agreed to pursue the Undefined Behavior
group’s effort to document Core Undefined or
Unspecified Behavior going forward. They’re
documenting all language undefined behavior that
C++ contains today, and we agreed to document
and justify any new language undefined behavior
going forward.

We marked 3 papers as tentatively ready for C++23:

Make declaration order layout mandated
Guaranteed copy elision for named return objects
C++ Identifier Syntax using Unicode Standard
Annex 31

They’ll proceed to the Core language group at the next
meeting if no issues are raised with these papers.

We continued reviewing pattern matching. This is one of
our top priorities going forward. It’s looking better and
better as we explore the design space and figure out how
all the corner cases should work. One large discussion
point at the moment is what happens when no match
occurs, and whether we should mandate exhaustiveness.
There’s exploration around the expression versus
statement form. We’re looking for implementation
experience to prove the design.

We really liked deducing this , a proposal that
eliminates the boilerplate associated with having
const and non- const , & and && member

function overloads. It still needs wording and
implementation experience, but has strong support.

We continue discussing floating-point fixed-layout types
and extended floating point types, which are mandating
IEEE 754 support for the new C++ float16_t ,
float32_t , float64_t , and adding support for
bfloat16_t .

std::embed , which allows embedding strings from
files, is making good progress.

In collaboration with the Unicode group, named universal
character escapes got strong support.

if consteval was reviewed. We’re not sure this is
exactly the right solution, but we’re interested in solving
problems in this general area.

We saw a really cute paper on deleting variable
templates and decided to expand its scope such that
more things can be marked as = delete in the

https://wg21.link/P1999
https://wg21.link/P2118
https://wg21.link/P1847
https://wg21.link/P2025
https://wg21.link/P1949
https://wg21.link/p1371
https://wg21.link/P0847
https://wg21.link/P1468
https://wg21.link/P1467
https://wg21.link/P1040
https://wg21.link/P2071
https://wg21.link/P1938
https://wg21.link/P2041

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 5/48

language. This will make C++ much more regular, and
reduce the need for expert-only solutions to tricky
problems.

Core Working Group (CWG) Progress

The top priority of CWG was finishing processing national
body comments for C++20. CWG spent most of its
remaining time this week working through papers and
issues improving the detailed specification for new C++20
features.

We finished reviewing four papers that fine-tune the
semantics of modules:

We clarified the meaning of static (and
unnamed namespaces) in module interfaces: such
entities are now kept internal and cannot be
exposed in the interface / ABI of the module. In
non-modules compilations, we deprecated cases
where internal-linkage entities are used from
external-linkage entities. (These cases typically
lead to violations of the One Definition Rule.)

We clarified the meaning of inline in module
interfaces: the intent is that bodies of functions that
are not explicitly declared inline are not part of
the ABI of a module, even if those function bodies
appear in the module interface. In order to give
module authors more control over their ABI,
member functions defined in class bodies in
module interfaces are no longer implicitly
inline .

We tweaked the context-sensitive recognition of
the module and import keyword in order to
avoid changing the meaning of more existing code
that uses these identifiers, and to make it more
straightforward for a scanning tool to recognize
these declarations without full preprocessing.

We improved backwards compatibility with
unnamed enumerations in legacy header files
(particularly C header files). Such unnamed
enumerations will now be properly merged across
header files if they're reachable in multiple different
ways via imports.

We finalized some subtle rules for concepts: a
syntax gotcha in requires expressions was
fixed, and we allowed caching of concept values,

https://wg21.link/p1815
https://wg21.link/p1779
https://wg21.link/p2092r0
https://wg21.link/p2104r0

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 6/48

which has been shown to dramatically improve
performance in some cases.

We agreed to (retroactively, via the defect report
process) treat initialization of a bool from a
pointer as narrowing, improving language safety.

We added permission for a comparison function to
be defaulted outside its class, so long as the
comparison function is a member or friend of the
class, for consistency and to allow a defaulted
comparison function to be non-inline.

Library Progress

Library Evolution Working Group Incubator
(LEWGI) Progress

LEWGI met for three and a half days this week and
reviewed 22 papers. Most of our work this week was on
various numerics proposals during joint sessions with the
Numerics group. A lot of this work may end up going into
the proposed Numerics Technical Specification, whose
scope and goals we are working to define. We also spent
a chunk of time working on modern I/O and concurrent
data structures for the upcoming Concurrency Technical
Specification Version 2.

LEWGI looked at the following proposals, among others:

Numerics:

Physical Units Library.
Linear Algebra.

Concurrency:

Concurrent Queues.

Low-level File I/O

Mapped File Handle.

Narrowing Conversions

std::is_narrowing_conversion.
std::narrow_cast.

Random Numbers

Improving std::random_device.
Portable Distributions.
Improving Engine Seeding.

https://wg21.link/p1957r2
https://wg21.link/P2004
https://wg21.link/P1883
https://wg21.link/P1930
https://wg21.link/P1385
https://wg21.link/P1958
https://wg21.link/P1883
https://wg21.link/P0870
https://wg21.link/P1998
https://wg21.link/P2058
https://wg21.link/P2059
https://wg21.link/P2060

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 7/48

Library Evolution Working Group (LEWG)
Progress

After handling the few remaining National Body
comments to fix issues with C++20, LEWG focused on
making general policy decisions about standard library
design standards. For example, we formally codified the
guidelines for concept names in the standard library, and
clarified SD-8, our document listing the compatibility
guarantees we make to our users. Then we started
looking at C++23 library proposals.

Moved-from objects need not be valid generated much
internal discussion in the weeks leading up to the
meeting as well as at the meeting itself. While the exact
solution outlined in the paper wasn’t adopted, we are
tightening up the wording around algorithms on what
operations are performed on objects that are temporarily
put in the moved-from state during the execution of an
algorithm.

The biggest C++23 news: LEWG spent an entire day with
the concurrency experts of SG1 to review the executors
proposal — we liked the direction! This is a huge step,
which will enable networking, audio, coroutine library
support, and more.

Other C++23 proposals reviewed include

a new status_code facility
an ability for containers and allocators to
communicate about the actual allocation size
iterator range constructors for std::stack and
std::queue

We’ve also decided to deprecate std::string ’s
assignment operator taking a char (pending LWG).

Library Working Group (LWG) Progress

The primary goals were to finish processing NB
comments and to rebase the Library Fundamentals TS
on C++20. We met both of those goals.

We looked at all 48 open library-related NB comments
and responded to them. Some were accepted for C++20.
Some were accepted for C++20 with changes. For some,
we agreed with the problem but considered the fix to be
too risky for C++20, so an issue was opened for
consideration in C++23. For many the response was “No
consensus for change,” which can mean a variety of

https://wg21.link/P1851
https://isocpp.org/std/standing-documents/sd-8-standard-library-compatibility
https://wg21.link/P2027
https://wg21.link/P0443
https://wg21.link/P1028
https://wg21.link/P0401
https://wg21.link/P1425
https://wg21.link/P2037
https://wg21.link/P2081

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 8/48

things from “this is not really a problem” to “the problem is
not worth fixing.”

The last of the mandating papers was reviewed and
approved. All of the standard library should now be
cleaned up to use the latest library wording guidelines,
such as using “Mandates” and “Constraints” clauses
rather than “Requires” clauses.

Some time was spent going through the LWG open
issues list. We dealt with all open P1 issues (“must fix for
C++20”). Many of the open P2 issues related to new
C++20 features were dealt with, in an attempt to fix bugs
before we ship them.

This was Marshall Clow’s last meeting as LWG chair. He
received a standing ovation in plenary.

Concurrency and Parallelism Study Group
(SG1) Progress

SG1 focused on C++23 this week, primarily on driving
executors, one of the major planned features on our
roadmap. Executors is a foundational technology that
we'll build all sorts of modern asynchronous facilities on
top of, so it's important that we land it in the standard
early in the C++23 cycle.

At this meeting, LEWG approved of the executors design,
and asked the authors to return with a full specification
and wording for review at the next meeting.

SG1 reviewed and approved of a refinement to the
design of the sender/receiver concepts. This change
unifies the lifetime model of coroutines and
sender/receiver and allows us to statically eliminate the
need for heap allocations for many kinds of async
algorithms.

Going forward, SG1 will start working on proposals that
build on top of executors, such as concurrent algorithms,
parallel algorithms work, networking, asynchronous I/O,
etc.

Networking Study Group (SG4) Progress

SG4 started processing review feedback on the
networking TS aimed at modernizing it for inclusion in
C++23. SG4 also reviewed a proposal to unify low-level
I/O with the high-level asynchronous abstractions and
gave feedback to the author.

https://wg21.link/P1460
https://wg21.link/P1369
https://wg21.link/P0443R12
https://wg21.link/P2006R0
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4771.pdf
https://wg21.link/p2052

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 9/48

Numerics Study Group (SG6) Progress

The Numerics group met on Monday this week, and also
jointly with LEWGI on Tuesday and Thursday, and with
SG19 on Friday.

We reviewed papers on a number of topics, including:

The scope and goals for the Numerics TS.
Linear algebra.
Units library.

Compile-Time Programming Study Group
(SG7) Progress

Circle is a fork of C++ that enables arbitrary compile-time
execution (e.g. a compile-time std::cout), coupled
with reflection to allow powerful meta-programming. SG7
was interested in it and considered copying parts of it.
However, concerns were raised about security and
usability problems, so the ability to execute arbitrary code
at compile-time was rejected.

Besides that, we also continued to make progress on
C++ reflection including naming of reflection keywords
and potential to enable lazy evaluation of function
arguments.

We also looked at the JIT proposal and asked authors to
try to unify the design with current reflection proposals.

Undefined Behavior Study Group
(SG12)/Vulnerabilities Working Group (WG23)
Progress

We set out to enumerate all undefined and unspecified
behavior. We’ve decided that upcoming papers adding
new undefined or unspecified behavior need to include
rationale and examples.

SG12 also collaborated with the MISRA standard for
coding standards in embedded systems to help them
update the guidelines for newer C++ revisions.

Human Machine Interface and Input/Output
Study Group (SG13) Progress

https://wg21.link/P2004
https://wg21.link/P1385
https://wg21.link/P1935
https://www.circle-lang.org/
https://wg21.link/P2043
https://wg21.link/P2062
https://wg21.link/P1609
https://wg21.link/P1705
https://www.misra.org.uk/

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 10/48

SG13 had a brief presentation of extracts from the 2019
CppCon keynote featuring Ben Smith (from 1:05:00)

We looked at A Brief 2D Graphics Review and
encouraged exploration of work towards a separable
color proposal.

Finally, we worked through the use cases in Audio I/O
Software Use Cases. We have a couple of weeks before
the post meeting mailing deadline to collect additional
use cases and will then solicit feedback on them from
WG21 and the wider C++ community.

Tooling Study Group (SG15) Progress

The Tooling study group met this week to continue work
on the Module Ecosystem Technical Report. Three of the
papers targeting the Technical Report are fairly mature at
this point, so we've directed the authors of those papers
to work together to create an initial draft of the Technical
Report for the Varna meeting. Those papers are:

Dependency Information Format
Module Recipe and BMI Reuse
User-Facing Lexicon and File Extensions

This draft will give us a shared vehicle to start hammering
out the details of the Technical Report, and a target for
people to write papers against.

We also discussed two proposals, about debugging C++
coroutines and asynchronous call stacks.

Machine Learning Study Group (SG19)
Progress

SG14 met in Prague in a joint session with SG19
(Machine Learning).

The freestanding library took a few steps forward, with
some interesting proposals, including Freestanding
Language: Optional ::operator new

One of the biggest decisions was on Low-Cost
Deterministic C++ Exceptions for Embedded Systems
which got great reactions. We will probably hear more
about it!

Unicode and Text Study Group (SG16)
Progress

https://www.youtube.com/watch?v=5N4b-rU-OAA
http://wg21.link/P2005R0
http://wg21.link/P2054
https://wg21.link/P1689
https://wg21.link/P1788
https://wg21.link/P1838
https://wg21.link/P2073
https://wg21.link/P2074
https://wg21.link/P2013R0
https://www.research.ed.ac.uk/portal/files/78829292/low_cost_deterministic_C_exceptions_for_embedded_systems.pdf

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 11/48

Our most interesting topic of the week concerned the
interaction of execution character set and compile-time
programming. Proposed features for std::embed and
reflection require the evaluation of strings at compile time
and this occurs at translation phase 7. This is after
translation phase 5 in which character and string literals
are converted to the execution character set. These
features require interaction with file names or the internal
symbol table of a compiler. In cross compilation scenarios
in which the target execution character set is not
compatible with the compiler’s host system or internal
encoding, interesting things happen. As in so many other
cases, we found an answer in UTF-8 and will be
recommending that these facilities operate solely in UTF-
8.

We forwarded Named Universal Character Escapes and
C++ Identifier Syntax using Unicode Standard Annex 31
to EWG. Both papers were seen by EWG this week and
are on track for approval for C++23 in meetings later this
year.

We forwarded Naming Text Encodings to Demystify
Them to LEWG.

We declined to forward a paper to enhance
std::regex to better support Unicode due to severe

ABI restrictions; the std::regex design exposes
many internal details of the implementation to the ABI
and implementers indicated that they cannot make any
significant changes. Given the current state of
std::regex is such that we cannot fix either its

interface or its well-known performance issues, a number
of volunteers agreed to bring a paper to deprecate
std::regex at a future meeting.

Machine Learning Study Group (SG19)
Progress

SG19 met for a full day, one half day with SG14 (Low
Latency), and one half day with SG6 (Numerics).

Significant feedback from a ML perspective was provided
on Simple Statistics functions, especially regarding the
handling of missing data, non-numeric data, and various
potential performance issues.

There was an excellent presentation of "Review of
P1708: Simple Statistical Functions" which presented an
analysis across Python, R, SAS and Matlab for common
statistical methods.

https://wg21.link/P2071
https://wg21.link/P1949
https://wg21.link/P1885
https://wg21.link/P1708

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 12/48

The graph library paper had a great reaction, was also
discussed, and will proceed.

Also, support for differentiable programming in C++,
important for well-integrated support for ML back-
propagation, was discussed in the context of
differentiable programming for C++.

Contracts Study Group (SG21) Progress

In a half-day session, we discussed one of the major
points of contention from previous proposals, which was
the relationship between “assume” and “assert”,
disentangling colloquial and technical interpretations. We
also discussed when one implies the other, and which
combinations a future facility should support.

Previous Disagreements
Assumptions
Portable Assumptions

C++ Release Schedule

NOTE: This is a plan not a promise. Treat it as
speculative and tentative. See P1000 for the latest
plan.

IS = International Standard. The C++ programming
language. C++11, C++14, C++17, etc.
TS = Technical Specification. "Feature branches"
available on some but not all implementations.
Coroutines TS v1, Modules TS v1, etc.
CD = Committee Draft. A draft of an IS/TS that is
sent out to national standards bodies for review
and feedback ("beta testing").

Meeting Location Objective

2018 Summer
LWG Meeting

Chicago
Work on wording for
C++20 features.

2018 Fall EWG
Modules
Meeting

Seattle
Design modules for
C++20.

2018 Fall
LEWG/SG1
Executors
Meeting

Seattle
Design executors for
C++20.

http://wg21.link/P1709
https://wg21.link/P2072
https://wg21.link/P2076
https://wg21.link/P2064
https://wg21.link/P1774
https://wg21.link/P1000

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 13/48

Meeting Location Objective

2018 Fall
Meeting

San
Diego

C++20 major language
feature freeze.

2019 Spring
Meeting

Kona
C++20 feature freeze.
C++20 design is
feature-complete.

2019 Summer
Meeting

Cologne

Complete C++20 CD
wording. Start C++20
CD balloting ("beta
testing").

2019 Fall
Meeting

Belfast
C++20 CD ballot
comment resolution
("bug fixes").

2020 Spring
Meeting

Prague

C++20 CD ballot
comment resolution
("bug fixes"), C++20
completed.

2020 Summer
Meeting

Varna
First meeting of
C++23.

2020 Fall
Meeting

New
York

Design major C++23
features.

2021 Winter
Meeting

Kona
Design major C++23
features.

2021 Summer
Meeting

Montréal
Design major C++23
features.

2021 Fall
Meeting

🗺 C++23 major language
feature freeze.

2022 Spring
Meeting

Portland
C++23 feature freeze.
C++23 design is
feature-complete.

2022 Summer
Meeting

🗺

Complete C++23 CD
wording. Start C++23
CD balloting ("beta
testing").

2022 Fall
Meeting

🗺
C++23 CD ballot
comment resolution
("bug fixes").

2023 Spring
Meeting

🗺

C++23 CD ballot
comment resolution
("bug fixes"), C++23
completed.

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 14/48

Meeting Location Objective

2023 Summer
Meeting

🗺 First meeting of
C++26.

Status of Major C++ Feature Development

NOTE: This is a plan not a promise. Treat it as
speculative and tentative.

IS = International Standard. The C++ programming
language. C++11, C++14, C++17, etc.
TS = Technical Specification. "Feature branches"
available on some but not all implementations.
Coroutines TS v1, Modules TS v1, etc.
CD = Committee Draft. A draft of an IS/TS that is
sent out to national standards bodies for review
and feedback ("beta testing").

Changes since last meeting are in bold.

Feature Status
Depends
On

Current
Target
(Conservativ
Estimate)

Concepts

Concepts
TS v1
published
and merged
into C++20

C++20

Ranges

Ranges TS
v1
published
and merged
into C++20

Concepts C++20

Modules

Merged
design
approved
for C++20

C++20

Coroutines

Coroutines
TS v1
published
and merged
into C++20

C++20

https://en.cppreference.com/w/cpp/language/constraints
https://en.cppreference.com/w/cpp/experimental/ranges
https://wg21.link/P1103
https://wg21.link/N4723

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 15/48

Feature Status
Depends
On

Current
Target
(Conservativ
Estimate)

Executors

New
compromise
design
approved
for C++23

C++26

Contracts
Moved to
Study
Group

C++26

Networking
Networking
TS v1
published

Executors C++26

Reflection
Reflection
TS v1
published

C++26

Pattern
Matching

C++26

Modularized
Standard
Library

C++23

Last Meeting's Reddit Trip Report.

If you have any questions, ask them in this thread!

Report issues by replying to the top-level stickied
comment for issue reporting.

/u/blelbach, Tooling (SG15) Chair, Library Evolution
Incubator (SG18) Chair

/u/bigcheesegs

/u/c0r3ntin

/u/jfbastien, Evolution (EWG) Chair

/u/arkethos (aka code_report)

/u/vulder

/u/hanickadot, Compile-Time Programming (SG7) Chair

/u/tahonermann, Text and Unicode (SG16) Chair

/u/cjdb-ns, Education (SG20) Lieutenant

https://wg21.link/P1658
https://wg21.link/P0542
https://wg21.link/N4711
https://wg21.link/P0194
https://wg21.link/P1371
https://wg21.link/P1453
https://www.eddit.com/r/cpp/comments/dtuov8/201911_belfast_iso_c_committee_trip_report/
https://old.reddit.com/u/blelbach
https://old.reddit.com/u/bigcheesegs
https://old.reddit.com/u/c0r3ntin
https://old.reddit.com/u/jfbastien
https://old.reddit.com/u/arkethos
https://old.reddit.com/u/vulder
https://old.reddit.com/u/hanickadot
https://old.reddit.com/u/tahonermann
https://old.reddit.com/u/cjdb-ns

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 16/48

514 comments share save hide report

top 200 comments show 500
sorted by:

[–] blelbach NVIDIA | ISO C++ Library Incubator Chair | ISO C++ Tooling Chair [S,M] [score hidden] 28 days ago - stickied comment

This a top-level stickied comment for reporting issues in the trip report.
permalink embed save report reply

[–] James20k P2005R0 80 points 1 month ago

This was my first committee meeting! It was extremely interesting, it answered a lot of my questions about why
C++ has gotten to the state which it is in, in both the good and the bad. Apparently I've now become the colour
guy which is nice too

If you've got any questions about the process I can answer them as best I can, I mostly hung out in LEWGI
looking at library proposals, though i jumped around a lot (as well as presenting to SG13 about the graphics
proposal), and was there for the great ABI bakeoff

I think a few things are worth saying though

1. Everyone was extremely friendly. Thank herb for this, as its been a big goal of his

2. The committee has a lack of technically expert manpower in many fields. If you work for gamedev, or
know a lot about clang/gcc/msvc/icc, or know a lot about the language you should really go because it

/u/nliber

/u/sphere991

/u/tituswinters, Library Evolution (LEWG) Chair

/u/HalFinkel, US National Body (PL22.16) Vice Chair

/u/ErichKeane, Evolution Incubator (SG17) Assistant
Chair

/u/sempuki

/u/ckennelly

/u/mathstuf

/u/david-stone, Modules (SG2) Chair and Evolution
(EWG) Vice Chair

/u/je4d, Networking (SG4) Chair

/u/FabioFracassi, German National Body Chair

/u/redbeard0531

/u/nliber

/u/foonathan

/u/InbalL, Israel National Body Chair

/u/zygoloid, C++ Project Editor

⋯ and others ⋯

best

Want to add to the discussion?
Post a comment!

CREATE AN ACCOUNT

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/
javascript: void 0;
javascript:void(0)
javascript:void(0)
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/?limit=500
javascript:void(0)
https://old.reddit.com/user/blelbach
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/
https://old.reddit.com/r/cpp/about/moderators
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi2904f/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k
https://old.reddit.com/u/nliber
https://old.reddit.com/u/sphere991
https://old.reddit.com/u/tituswinters
https://old.reddit.com/u/HalFinkel
https://old.reddit.com/u/ErichKeane
https://old.reddit.com/u/sempuki
https://old.reddit.com/u/ckennelly
https://old.reddit.com/u/mathstuf
https://old.reddit.com/u/david-stone
https://old.reddit.com/u/je4d
https://old.reddit.com/u/FabioFracassi
https://old.reddit.com/u/redbeard0531
https://old.reddit.com/u/nliber
https://old.reddit.com/u/foonathan
https://old.reddit.com/u/InbalL
https://old.reddit.com/u/zygoloid
https://old.reddit.com/login

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 17/48

needs you folks. I floated a few times my idea that we should always have an implementer on a phone
hotline, but it costs £10 every time you phone it

3. Everyone in the committee is painfully aware of the language problems. Its not lack of enthusiasm or
acknowledgement that means stuff isn't being fixed, although in some cases (eg random), there is a lack
of domain expertise that means that a subgroup might not really understand that an issue is so important
(eg uniform_etc_distribution)

I believe you're allowed to publicly share straw polls, but not directly quote anyone without permission, though I'd
love to know more exactly what the rules are around sharing eg "x group thought y"

Oh and please please go if you're gamedev. There were 6 of us there in total. Often i was the sole voice of game
development in the room, which is slightly disconcerting
permalink embed save report reply

[–] adnukator 27 points 1 month ago*

It was my first committee meeting as well and I fully agree with the above. Too bad I had other obligations
and could stay only for two days. Might change with the next meeting in Varna.

The friendliness was really refreshing, considering the amount of pitchforks and torches any slightly
controversial statement on the internet can summon. The whole meeting made me seriously consider writing
and submitting an idea I've been keeping in my head for a while. Until now I had the assumption that any
proposal going before the committee has to be bullet-proof. But it actually turns out that if your proposal
does have flaws, nobody gangs up on you. Instead, you get constructive feedback on what to improve and
get suggestions which paths to further explore to arrive at a more polished proposal.

I'd seriously recommend visiting a C++ committee meeting to anyone who either wants to improve the
language or just wants to learn how things are made. Even to any C++ haters - and perhaps "convert" them
in the process. I felt that valid remarks during debates are welcome from anyone. So the more people with
different specializations chime in (productively, of course), the better the proposals can become.
permalink embed save parent report reply

[–] variar_fav 15 points 1 month ago

My first meeting also. +1 for earlier comments. I didn't have a proposal for C++, my goal was to visit
different rooms and get better understanding of how baking C++ works. This is very interesting and
unusual process. Each decision has to be considered in terms of what impact it will have during next
decades. Or for example will it provoke people to use marcos (that many hate but sometimes language
leaves no choice). Each study group feels different, some are easier than others. Didn't have guts to
visit CWG or LWG ;) (however I understand that I couldn't do anything useful there this time).

After the meeting I feel encouraged to convert some ideas into P-papers. That really is not very scary.

I want to thank group chairs. These folks did a lot of work to make discussions go smoothly and
progress. Can't imagine how much they had to do behind the scene to manage schedules, meeting
notes and polls, getting needed people in the room (eg. implementors) etc.

If a C++ committee meeting is happening somewhere near you, you should consider visiting it. One
don't have to write a proposal, being able to share real life field experience with using C++ is already big
help. However, it's worth reading paper proposals in advance :)
permalink embed save parent report reply

[–] imgarfield 31 points 1 month ago

The lack of gamedev involvement is extremely ironic and unfortunate, considering they are arguably one of
the biggest C++ user and the biggest in terms of mainstream employment.
permalink embed save parent report reply

[–] James20k P2005R0 17 points 1 month ago

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhorwbj/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/adnukator
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoszsn/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/variar_fav
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpon0d/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/imgarfield
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp1f3u/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 18/48

Yep! Its crazy there's no gamedev. The topic of the lack of portability of random number distributions
cropped up, which is one of the major reasons why gamedev would never use them. If there'd been a
big gamedev presence in the room, we could have gotten it through, but as it was most of the
represented industry in the room didn't care, so it died
permalink embed save parent report reply

[–] SeanMiddleditch Game Developer 16 points 1 month ago

This was a huge reason why we started SG14, though it eventually morphed into low-latency rather
than being purely about games.

We used to hold SG14 meetings at GDC and such even (not sure if that has happened recently; I'm
not involved anymore).
permalink embed save parent report reply

[–] James20k P2005R0 4 points 1 month ago

Interesting, I had no idea. Thanks!
permalink embed save parent report reply

[–] SAHChandler C++ Bruja 25 points 1 month ago*

a lot of times on twitter you’ll see gamedevs say one of

1) the committee is full of academic masturbation! why would I go no one would listen to me? 2) the
committee should come to us, because that’s how publishers work and that’s what we’re used to 3)
they just need to focus on this problem I have and nothing else 4) they should just make C++ more
like C#

I think people change their tune when they do finally go but overall, and this is gonna sound petty,
(because it is) I feel like a lot of the games industry is full of pillow princesses who don’t understand
that they need to take an initiative because the world really doesn’t care about them ¯_(ツ)_/¯

That said I try to keep gamedev needs in mind because I used to work in that field and have a ton of
contacts and friends there, but sometimes the requests I hear from people usually boil down to
“Microsoft had this issue with their compiler (in 2003) so obviously the whole language works like
that and nothing has changed” :/
permalink embed save parent report reply

[–] --Jasper-- 11 points 1 month ago

The big reason is that this takes time. A lot of time. We're focused on shipping games most of
the day, and we have a lot of stuff to get through. Hal Finkel admitted writing papers takes, at
minimum, a month or so of effort. That's a super high bar for us, and that's time we don't have.

If the process was more open and allowed us to even *comment* on papers going through the
process without having to write a replacement, we'd love that.

I'm not a big fan of the rough "us vs. them" characterization, re: pillow princesses or whatever.
We work with 20-year-old engine code that barely has any tests, come on, we're as jaded as
the rest of them. On our side of the fence, we look at "std::byte" and think you're all pillow
princesses playing with ivory dollhouses too. :)

As-is though, the process is open to "those who have time to write a paper", and that's not
something gamedev can afford to fund right now.
permalink embed save parent report reply

[–] SAHChandler C++ Bruja 14 points 1 month ago

Most of the people on the committee (save for implementers who typically wear several
hats at their various orgs/work on multiple products and Dr. Walter E. Brown who is retired
and been given emeritus status due to his massive list of contributions) are also focused on

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp1mzg/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SeanMiddleditch
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpgi2f/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhphanz/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SAHChandler
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpohhi/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/--Jasper--
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqxn41/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SAHChandler

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 19/48

shipping and maintaining their products. When I worked at Apple we had to ship a
deployment every 3 weeks for software that (at the time) received 8 billion requests a day
from Japan alone. It's only gotten bigger since.

As for commenting on papers, you're more than free to email each author (that's why the
Reply-To field is placed in each paper). It also only costs 2200USD to join the American
National Body (INCITS, not ANSI). If an industry where the CEOs of Rockstar, Activision,
and Epic Games are walking away with billions of dollars from GTA, Modern Warfare, and
Fortnite, while developers get left out in the cold, maybe something needs to change. The
process is (mostly) closed because, unfortunately, collusion is a concern for multiple
governments and ISO provides protections for its various members. Imagine for a moment
if GOG, Tim Sweeney, and Gabe Newell sat in a room together to discuss a "game store
standard" for PC. If it wasn't done via a Business League or something similar to ISO, the
FBI (or any other nation state's police force) could walk into the room and arrest them.

The reason std::byte exists is because std::is_same_v<char, signed char> is
false and the signedness of char is compiler flag specific. If it's a signed char (which again
is not the same as signed char because of C), then overflow is implementation
defined. If it's unsigned, then it will behave correctly and this can affect codegen. std::byte
is the only way to

1. make writing "unsigned char" not a PITA
2. Remove the ability to perform mathematical operations on a byte (i.e., you can only

do bitwise operations)
3. Keep strict aliasing as a compiler fence without requiring volatile reads/writes for no

reason other than "I want to enforce strict aliasing"

Lastly, pillow princess is a term from the LGBTQ+ community that implies someone wants
to be "serviced" and not have to do anything. In other words, they can just lie back on a
pillow and... well you get the idea :)

But to get access to the mailing lists it's the cost of rent for a 1b1b apartment in Berkeley
and that's a business expense. If game companies that make as much money as Epic
Games does feel like they can't participate, that's on them. Plenty of small companies
(smaller than many indie studios, even) participate in and show up to these meetings.
There's no valid excuse coming from game companies.
permalink embed save parent report reply

[–] m_ninepoints rendering/gfx, game engines 8 points 1 month ago

I'm in the games industry currently and am somewhat sympathetic to both sides. First, I
should say that while there is some money in games, it is absolutely dwarfed by the
likes of Google, Apple, Microsoft, etc due to production costs. Hundreds of millions of
dollars of revenue per title isn't actually all that much when each title costs up to 100M
+ marketing costs to ship (restricting myself to AAA here).

I've actually sent a lot of notes regarding, say, the graphics proposal before and why
I'm pretty much vehemently against what was outlined, although James did a much
better job formalizing the argument then I did.

To clear the air a bit, I think it isn't so much that game developers want free "service."
It's more that they don't like abstractions added that hurt compile times without clear
performance gains or advantages. Remember that in most studios, the STL is nowhere
to be found because a lot of this code predated the existence of a move constructor.
Move constructors certainly improved things a bit, but until trivially relocatable traits are

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhr7evb/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/m_ninepoints

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 20/48

in, the code provided by the STL is still slower than what many of us use in house.
Even Google et. al. uses their own bespoke "standard" library.

When you couple crunch and stress, plus a lot of baggage and getting marginally less
pay coding something because you're in a more glamorous field, it tends to turn into an
unproductive whine. To your point, this irks me too, and I wish that the criticisms levied
by others in my industry could be done more constructively.

As for companies like Epic, I see UE4 code all the time. This code is NOT idiomatic
"modern" C++ by any stretch. In fact, the abstractions of modern C++ have left the
game dev world in many places, so for most of them, they would almost prefer it if the
C++ language ossified completely and all remaining improvements were made just to
the tooling.

Personally, I really wish the generalizations would stop on both sides. Pointing a finger
at all game developers is just as egregious as pointing a finger at all committee
members. It places a disproportionate significance on the voice of the vocal minority,
when some of us actually like some of the features coming down the pipeline, and
would probably even sit down to write a paper if we didn't have so many other things
going on.
permalink embed save parent report reply

[–] kmhofmann https://selene.dev 3 points 29 days ago

In fact, the abstractions of modern C++ have left the game dev world in many
places, so for most of them, they would almost prefer it if the C++ language
ossified completely and all remaining improvements were made just to the
tooling.

I also dislike generalizations, but you're making one here, and... it's kind of true!

In fact, this is my single biggest criticism targeted at many C++ developers in the
games industry. They seem to hate progress and rile against it loudly on Twitter.
Something I will never understand, since a lot of the beauty of C++ is in its very
powerful abstractions.

Yup, this was a massive generalization, but one unfortunately I see confirmed over
and over again.
permalink embed save parent report reply

load more comments (2 replies)

load more comments (1 reply)

load more comments (3 replies)

load more comments (1 reply)

[–] 14ned LLFIO & Outcome author | Committees WG21 & WG14 7 points 1 month ago

Lot of people on the current committee find the current situation with standard RNGs unfortunate.
However, we were all in other rooms proposing other stuff, so we weren't in that room.

For the record, there's easily half a dozen, perhaps a dozen game devs attending WG21. I'd even
say they have outsize weight influence for their number. But all were elsewhere working on higher
priority items this week. Sorry.
permalink embed save parent report reply

[–] James20k P2005R0 3 points 1 month ago

No need to apologise! I was in the room, and in hindsight knowing what I know now, I'd speak
up next time and make a much louder noise. It was partly a learning experience for me to

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhvs9mt/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kmhofmann
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhy2yn4/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/14ned
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq9o90/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 21/48

realise that even if something seems obvious, you need to really make the case

But yeah I mean, there were a few other things on the docket so not exactly surprising folks
were busy!
permalink embed save parent report reply

[–] 14ned LLFIO & Outcome author | Committees WG21 & WG14 3 points 1 month ago

I'll also be honest and say that I personally didn't find the RNG proposals as presented
compelling. Not due to their goal, but rather the formulation proposed. If others felt the
same way as me, that might also explain the absence of support.

I have half a mind to propose a file_handle implementation which implements a
synthesised seekable file full of random data. I use an implementation for testing and
benchmarking in LLFIO. It's identical on all platforms, vectorises with buffers filled, has an
ungodly performance. The sequence can be replayed by reusing the same offset read from,
and the "contents" can be permuted via setting a seed.

I find it a bit ugly to solve the RNG problem in standard C++, but it very definitely solves all
my problems with RNG in standard C++.
permalink embed save parent report reply

[–] James20k P2005R0 3 points 1 month ago

Yeah, the proposals weren't well motivated in that presentation, and the author did not
do the best job at selling it. There's an alternate formulation there that needs to be done
and re-presented

Hah. I mean its honestly not the worst method for doing rng. Ill take anything over
rand()
permalink embed save parent report reply

[–] Dascandy HippoMocks/cpp-dependencies/Evoke/Pixel dev 2 points 1 month ago

+1 - worked with Martin on that paper (not listed I think) and I'm 100% in favor of making the
distributions portable - yet I wasn't in that room, because there were other rooms I had to be in
more.
permalink embed save parent report reply

[–] Benjamin1304 6 points 1 month ago

I find it very sad that the committee members seem to only care about the persons physically
present in the room. It's quite easy to understand why the non-portability of random number
distributions is a problem for game devs, probably one of the biggest C++ community out there btw,
no matter if there is only one of them in the room raising the issue.

I really think that the standardization process should happen more online where it's easy to reach
for the community rather basing all decisions on the couple hundred people having the ability to
travel to the meetings.
permalink embed save parent report reply

[–] James20k P2005R0 8 points 1 month ago

Its not that... Committee members don't care. Its that every feature in C++ has a significant time
investment to solve, so authors proposing features have to justify them. If the rest of the room
doesn't think its that important, it'll get voted against. A strong case was made that non
portability doesn't matter most of the time, and nobody managed to make a strong enough case
that it does

Its not that the committee members ignored anyone, its just that the people on the other side of
the argument weren't there to make it, and committee members only know their own domains

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqao7n/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/14ned
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqekwx/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqjoef/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Dascandy
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrw296/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Benjamin1304
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq6bfc/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 22/48

It was actually very early in the week, if it'd been later I'd have made a case for it knowing now
how the process works if the author doesn't manage to convince the room - but I believe it was
monday or tuesday and I was more green
permalink embed save parent report reply

[–] Dascandy HippoMocks/cpp-dependencies/Evoke/Pixel dev 8 points 1 month ago

There are at least 5 different disjoint groups of people that all think they're the biggest group of
C++ users.
permalink embed save parent report reply

load more comments (7 replies)

load more comments (5 replies)

load more comments (6 replies)

[–] Ameisen 10 points 1 month ago

I'd love to go. Can't afford to, though.
permalink embed save parent report reply

[–] James20k P2005R0 11 points 1 month ago

Write a paper and get funded to go! That's how I managed to afford going

They'll pay for travel and accommodation, though not food
permalink embed save parent report reply

[–] bumblebritches57 FoundationIO, OVIA, and occasionally LLVM 3 points 1 month ago

Hmm, how does that work?

I'm thinking about writing a proposal for WG14/C but my main concern was not being able to go in
person.
permalink embed save parent report reply

[–] James20k P2005R0 10 points 1 month ago

I'm a brit, I'll quickly describe the process

1. Wrote a paper

2. People liked the paper

3. Got contacted by the head of SG13 (Roger Orr) asking me if I wanted to present

4. Sent the head of the BSI (also Roger Orr) an email asking for funding, who asked me to
forward to herb

5. Simultaneously someone asked me to come along to the BSI, the british national body
for C++

6. Got on well at the BSI

7. Turns out my email to Herb got lost, and Roger Orr poked him in his capacity as BSI
head (I think? its not exactly overly formal)

8. Herb said yes, in conjunction with some other people

Now I have to send them receipts for stuff

If you need help with the process involved in writing a proposal... I can't say I'm the best person
in the entire universe to ask (only written 1 paper, and this was my first meeting), but I'm happy
to help if I can or direct you to other people who know more. Its a lot easier once you've been to
a meeting I think, because you know everyone then

If you need help getting funding just email someone and they'll be happy to help (or I can point
you towards people)

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqa6t7/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Dascandy
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrw6ia/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Ameisen
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhouazu/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoud2t/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/bumblebritches57
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp4h9z/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 23/48

permalink embed save parent report reply

[–] FabioFracassi C++ Committee | Consultant 6 points 1 month ago

Wg14/C is a totally different committee (apart from a few people who go to both) , with different
rules (and afaiu much less open).

For wg21/c++ isocpp.org takes care of this.
permalink embed save parent report reply

[–] 14ned LLFIO & Outcome author | Committees WG21 & WG14 5 points 1 month ago

WG14/C is indeed a totally different committee. Technically the same rules apply for both,
due to ISO, but in practice different emphasis of rules has appeared.

WG14 is just as open as WG21. Perhaps even more so. They'll be delighted to see
anybody turn up, and because it's small, it's intimate in a way WG21 once was, and no
longer can be. You also get a mix of everybody in a single room, and that is vastly more
efficient and productive than in WG21 where it can take several meetings before your
proposal gets shot down.

Achieving anything but minor change at WG14 is very, very hard. They'll gladly hear you
out, even very radical proposals, but unless it's correctness you're fixing, you'll probably be
refused.

As WG14 control the C stuff, proposing changes to C stuff at WG21 will usually result in
being told to go ask WG14.

WG21 and WG14 will intentionally colocate meetings some time in 2021, so if you attend
then, you can go to both. There is no funding for attending WG14 meetings, but there is for
WG21 meetings under some circumstances, so that could be a solution. Just time
submitting your proposal right!
permalink embed save parent report reply

load more comments (3 replies)

[–] Xeverous Worker & Hobbyist with own C++ website under construction 3 points 1 month ago

If you work for gamedev, or know a lot about clang/gcc/msvc/icc, or know a lot about the language you
should really go because it needs you folks

I would like to go but any such meeting far away concerns me how it can break my job. Where do committee
people work in? Are they purely working on C++, funded by their companies are the meetings just small gap
in their job allowed by their employer? Money is not a problem for me I but have no idea how I can make a
full-time job with far flies every few months.
permalink embed save parent report reply

[–] STL MSVC STL Dev 8 points 1 month ago

Being away from work for a week is indeed a significant cost aside from money. If your employer uses
C++ to any significant degree, you should be able to argue that (1) you can represent your company's
concerns as a user even if you aren't driving any proposals (being able to vote in straw polls is a big
deal), and (2) attending a Committee meeting teaches you a lot about the latest and upcoming
developments in the language - training which is hard to access anywhere else (typically books etc.
cover a standard that's 3+ years old).
permalink embed save parent report reply

[–] Xeverous Worker & Hobbyist with own C++ website under construction 5 points 1 month ago

I currently work in outsourcing company so the technology choice is actually on the client. My
company just coordinates hiring, training, PR/HR/integration and people based on their skills.

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp5fln/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/FabioFracassi
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp67lg/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/14ned
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq91ir/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Xeverous
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqtaae/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/STL
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqvidx/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Xeverous

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 24/48

On the other hand, there was a recent post on company's blog that someone got sponsored from
the "passion/hobby sponsoring program" and the post contents were about getting some Coroutine
proposal thing done and the author got the travel/meeting cost sponsored. I guess I should contact
that person and ask for the guidance... (don't know the author in person, very likely not working in
the office/city as I)
permalink embed save parent report reply

[–] Daniela-E Modern C++, Embedded 4 points 1 month ago

During this week in Prague I happended to run into some other C++ devs from Germany who (like me)
do this on their own initiative, out of their own money, spending some of their off-days budget. In other
words: without any support or funding from the company they are employed at. In my particular case,
I'm fully employed as a C++ dev in a tiny company developing and building highly customized industrial
machines deployed to factory floors. This kind of business is really tough, getting any substiantial
support from a company like this is nearly impossible.
permalink embed save parent report reply

[–] Rseding91 Factorio Developer 2 points 1 month ago

If you work for gamedev

What exactly are they looking for from people in gamedev?
permalink embed save parent report reply

[–] matthieum 36 points 1 month ago

I am, perhaps unreasonably, very excited about the move = bitcopies proposal.

It is my personal opinion that C++ should aim for best-in-class performance. After all, performance is often the
core reason for choosing to use C++, thus sub-par performance should be a significant worry for renewed
usage.

This proposal addresses the core performance issue with move semantics as defined today, allowing
significantly faster implementations. For example, suddenly growing a
std::vector<std::unique_ptr<T>> can use realloc .

permalink embed save report reply

[–] whichton 4 points 1 month ago

That is a great and very necessary paper. I am still not clear what is the difference in objective between this
paper and P1144: Object relocation in terms of move plus destroy and why /u/14ned wants to vacate the
"relocation space". Both seem to achieve the same goal, albeit in different ways.
permalink embed save parent report reply

[–] 14ned LLFIO & Outcome author | Committees WG21 & WG14 9 points 1 month ago

P1144 enables standard library containers to be less stupid with collections of some types. It does not
modify ABI of such types otherwise e.g. return of them from functions.

P1029 is the opposite almost: types opted into move bitcopying get improved codegen i.e. ABI break
over if they were not opted in.

Both proposals enable standard library containers to be less inefficient, however P1144 produces
superior efficiency improvements to P1029 for standard library containers.
permalink embed save parent report reply

[–] VisualSlice3 3 points 1 month ago

I really like P1029 it seems quite simple for what it does.

If this was to get shipped do you think implementers would take the hit, break ABI and apply it to
existing types like unique_ptr and friends?
permalink embed save parent report reply

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqwu3a/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Daniela-E
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhtn354/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Rseding91
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhunh4o/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/matthieum
https://wg21.link/P1029
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoso9g/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/whichton
https://wg21.link/p1144
https://old.reddit.com/u/14ned
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp65f6/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/14ned
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqapyb/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/VisualSlice3
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqm6bd/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 25/48

[–] 14ned LLFIO & Outcome author | Committees WG21 & WG14 2 points 1 month ago

I suspect that would be extremely unlikely for existing architectures, but highly likely for any
newly supported architectures.

For specifically unique_ptr , I can see it becoming ABI broken if say a macro like
LIBCXX_ABI_UNSTABLE were defined, or equivalent thereof for the various standard library

implementations.
permalink embed save parent report reply

load more comments (2 replies)

[–] smdowney 24 points 1 month ago

It's my fault you can't throw 💩; anymore.
permalink embed save report reply

[–] SAHChandler C++ Bruja 5 points 1 month ago

😭

permalink embed save parent report reply

[–] Dascandy HippoMocks/cpp-dependencies/Evoke/Pixel dev 5 points 1 month ago

I argumented it such that it got zero votes against.
permalink embed save parent report reply

[–] PeterBrett SG16; CAD software dev 2 points 1 month ago

My hero ❤
permalink embed save parent report reply

[–] c0r3ntin 2 points 1 month ago

error: unexpected character U+2764 at line 1
permalink embed save parent report reply

[–] HildartheDorf 2 points 29 days ago

I thought valid unicode was acceptable for identifiers. Did you explicitly ban emoji in identifiers?
permalink embed save parent report reply

[–] smdowney 7 points 29 days ago

No, implicitly. We're fixing what's in allowed identifiers based on the Unicode TR31 standard. I want us
to do a better job at supporting Unicode, that is supporting identifiers in all languages. That means not
allowing things like arbitrary LTR modifiers, zero width spaces, punctuation, etc. The Unicode standard
has tables of the characters that are good for identifiers. They don't include emoji. At least partly
because you need, by design, left-to-right mods and zero width joiners, to express all emoji.

Someone could propose adding PILE OF POO to the list of allowed initial characters. We did that for
LOW BAR (_) to match the current grammar.
permalink embed save parent report reply

[–] AlexAlabuzhev 21 points 1 month ago*

https://en.cppreference.com/w/cpp/chrono/duration:

Literals

h, min, s, ms, us, ns

Note: the literal suffixes d and y do not refer to days and years but to day and year, respectively. (since
C++20)

I.e. 1d is not 24h , but the 1st day of a month.

What's the motivation for this?

javascript:void(0)
https://old.reddit.com/user/14ned
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqnmza/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/smdowney
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpdjyq/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SAHChandler
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpw6iv/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Dascandy
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpkahq/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/PeterBrett
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqtr4m/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/c0r3ntin
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqyoaw/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/HildartheDorf
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhwuu1b/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/smdowney
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhxiil5/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/AlexAlabuzhev
https://en.cppreference.com/w/cpp/chrono/duration
https://en.cppreference.com/w/cpp/chrono/day
https://en.cppreference.com/w/cpp/chrono/year

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 26/48

Yes, now we can construct a year_month_day as 15d/February/2020 , but is constructing dates from
literals in the code (in 3 different ways) really something needed every day and important enough to justify more
inconsistency?

It feels quite like initializer_list (convenient for helloworlding & unit tests, but rarely used in the actual
code and breaks uniform initalization beyond repair).
permalink embed save report reply

[–] tpecholt 17 points 1 month ago

I never understood the push for overloaded / for date construction. Many countries including mine use
different separator anyway so for all of us it just looks foreign. The Chrono library makes some weird choices
in the API. There was no need to brush the API that much imho
permalink embed save parent report reply

[–] RamielIsMyWaifu 5 points 1 month ago

What's the motivation for this?

it looks cool
permalink embed save parent report reply

load more comments (6 replies)

[–] manugildev 106 points 1 month ago

Break the ABI and save C++
permalink embed save report reply

[–] _VZ_ wx | soci | swig 9 points 1 month ago*

Why are so many people upset about not breaking ABI? Is the existence of a (de facto) ABI really such a big
problem? If so, how/why exactly?

Edit: It seems my question was misunderstood, so let me try to clarify. I understand the advantages of
keeping the ABI and the problems inherent to breaking it. What I don't understand is why are there several
comments just in this thread complaining about not forcefully breaking it. IMO this is really not the most
urgent problem to solve in C++, while the problem with unique_ptr is indeed annoying, I just can't
imagine there are that many people who absolutely can't live with it or apply some workaround. So my
question was why do people asking for breaking the ABI do it and what exactly do they hope to gain by this.
permalink embed save parent report reply

[–] shotashotshotashota 14 points 1 month ago

There's this law that says every observable behavior of a system will be used by someone. Even if its a
bug, if it existed long enough, they becomes a feature that someone, somewhere, uses.
permalink embed save parent report reply

[–] daveedvdv EDG front end dev, WG21 DG 12 points 1 month ago

Lately, that’s been referred to as Hyrum’s Law (after an engineer at Google, I believe).
permalink embed save parent report reply

[–] kkert 8 points 1 month ago

This should answer it, more or less: wg21.link/P2028 (shorter: wg21.link/P1863)
permalink embed save parent report reply

load more comments (13 replies)

[–] James20k P2005R0 29 points 1 month ago

So, in a lot of fields, yes. Its not uncommon for a library vendor to provide a C++ library which is closed
source (eg the steam API dll), which your application is built against. If there is an all or nothing ABI
break, in C++23 mode your application will now fail to compile against that closed source DLL

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpwj2v/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/tpecholt
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhruu9n/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/RamielIsMyWaifu
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhr4uzk/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/manugildev
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhonoek/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/_VZ_
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhorgn0/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/shotashotshotashota
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhozy4i/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/daveedvdv
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp4549/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kkert
http://wg21.link/P2028
http://wg21.link/P1863
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpbrjl/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 27/48

In a large organisation, it is a massive amount of work to fix ABI issues, because a large change like this
would have to be coordinated between vendors and people using code. When you have 10s of millions
of lines of code, this is fairly impractical, unless you're google

Then there are the closed source binaries for which we no longer have source, which means that an ABI
break is super problematic

Its worth noting that C++ does break ABI - but compiler vendors have tricks that they can use to mitigate
the impact to users, aka everything is fine. One of the big things that came out of the discussion around
ABI is that vendors have a lot more power here than people traditionally think they do to mitigate smaller
ABI breaks, so we should consider proposals that do contain ABI breaks instead of dismissing them as
has been done traditionally

I'm not convinced there isn't a toolchain solution here, where people who want ABI stability can have eg
clang generate a shim, which is one of my projects to look at post prague

The main argument for breakage is performance, particularly unique_ptr by value and
std::unordered_map
permalink embed save parent report reply

[–] mpyne 19 points 1 month ago*

To add to this, even open-source projects written using C++ often have policies on maintaining ABI.
This is the case with KDE.org for instance.

There's a lot of reasons for this but the primary one is that our users aren't able to recompile their
entire Linux distro every hour on the off chance that there was a source-compatible ABI break in a
base library that we provide. Ensuring ABI is maintained across releases within the same major
version is what makes it possible at all for our users to safely upgrade to new patch or minor
releases without breaking all of their other software. This allows for smaller changes and more
effective testing of those changes.

This is also one of the reasons that we sometimes use Qt versions of types or libraries that seem to
have viable 'native C++' equivalents. I know that QString in Qt5 is going to be forward-
compatible at an ABI level for the entire supported timeframe of Qt5, but I can't say the same for
std::string .

In a way this is almost an argument to choose to break ABI with a given C++ release (along the
lines of the upcoming Qt5 -> Qt6 transition where we know ABI will break), but that type of planned
ABI break is only useful if there's a semblance of a guarantee of ABI stability afterwards until a
subsequent announced break, and I haven't seen anyone pushing for that.

An ABI break is incredibly disruptive, the more so as the ABI becomes lower and lower level and
should not be considered lightly. KDE has a KDE Frameworks 5 library called kdelibs4support which
does more or less what it says on the tin, and we still have applications which use that ABI upgrade
path support library nearly a decade later. I don't even want to think about how working but
unmaintained software would handle an ABI break at the base C++ language/runtime layer!
permalink embed save parent report reply

[–] FrankHB1989 4 points 1 month ago*

It is reasonable to provide compatibility over a limited set of binary configurations of the
systems, mainly for end-users. It is reasonable to require a library reusable without rebuilding
them, which also (hopefully) saves other developers' work.

However, technically, such features are not implementable without restrictions, since there are
too many things (e.g. any machine-specific compilation options) out of the control from the
project maintainers. Only the publisher of the binary libraries (distributions) can eventually verify
and ensure such compatibility features for users.

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhosigo/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/mpyne
https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B
https://inqlude.org/libraries/kdelibs4support.html
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpbdke/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/FrankHB1989

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 28/48

Restrictions on the source code can make the resulted binaries more predictable, hence it
needs less work of the library publishers. For the binary compatibility defined here, this is a
workaround rather than a solution. Although such best-effort is often a good practice, it is not a
must for all cases, and sometimes even harmful.
permalink embed save parent report reply

load more comments (1 reply)

[–] FrankHB1989 10 points 1 month ago*

The main argument _for) breakage is performance, particularly unique_ptr by value and
std::unordered_map

Not quite true. There is actually nothing to prevent objects of std::unique_ptr<T> passed by
register technically in current C++. The fact is, specific ABIs used by some popular implementations
prevent it to be done. (Note that it does not prevent aggressive optimizations across TUs.)

So, the real argument here is to ease the work of implementations at the cost of users, although
users of the language will gain some expressiveness from this specific resolution. However, it is still
a shame to blindly attribute those QoI issues to the so-called ABI breakage problem and to expect
them resolved totally in the high-level language design.

For users of the language, there is one true need for the breakage: to make it fail fast and to get rid
of the bug-to-bug compatibility endorsed by the false guarantees in a more explicit way. There are
merely a few comparability features provided by documented ABI specs (e.g. involving ISA-specific
interoperations). Relying on things beyond those features are totally nonsense for average C++
users who have no effort to dig deep into the implementations once they meet weird problems. They
are away from sane and predictable interactions of the implementations, almost as bad as relying
on undefined behaviors. (Those relying on blobs deliberately are deserved to get the risks of the
breakage anyway; that is another story.)
permalink embed save parent report reply

[–] SkoomaDentist Antimodern C++, Embedded, Audio 9 points 1 month ago

Its not uncommon for a library vendor to provide a C++ library which is closed source (eg the
steam API dll), which your application is built against. If there is an all or nothing ABI break, in
C++23 mode your application will now fail to compile against that closed source DLL

This is misleading, particularly as you use DLLs as example. There never has been a stable C++
ABI on Windows. At most the ABI is no longer broken between every major compiler release, but
there is no expectation about long term C++ ABI stability on Windows. That's just the nature of the
beast.

The platform where there has been built up such expectation is the one where it should be needed
the least, namely Linux (and other *nixes), as the source code is almost always provided. In fact the
entire problem is largely selfmade since the stdlib maintainers have had the habit of not breaking
the ABI (with a major exception being std::string).

So now the entire C++ language is held hostage due to the implicit expectations of a single platform
and for some unfathomable reason people are defending this state of things. A bizarre situation
indeed.

Also we should remind people that there is no such thing as "the C++ ABI". Or can someone point
me to the part in the C++ standard that defines such thing?
permalink embed save parent report reply

[–] Plorkyeran 3 points 1 month ago

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqmrpt/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/FrankHB1989
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqjus8/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SkoomaDentist
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqsrij/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Plorkyeran

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 29/48

The Microsoft C runtime historically did not provide a stable ABI, but the C++ ABI on Windows
has been stable forever and providing a DLL which works with every version of vc++ is not very
hard. You mostly just can't expose any standard library types in your API and have to ensure
that everything allocated by your DLL is also deallocated by your DLL.
permalink embed save parent report reply

[–] SkoomaDentist Antimodern C++, Embedded, Audio 4 points 1 month ago

As far as stdlib ABI breakage (which is what's really being discussed here) goes, the result
is still the same: Microsoft can (and will) break the ABI when it deems necessary and
people aren't going to complain much as long as it doesn't happen between every major
compiler version.
permalink embed save parent report reply

[–] arclovestoeat 2 points 1 month ago

How common is it to ship binary-only C++ libraries? In binary form, I’ve mostly only dealt with C
libraries, or very pared down C++ (eg, no std::string in interface). Could things still break if the
binary library linked against an old standard library?
permalink embed save parent report reply

[–] SkoomaDentist Antimodern C++, Embedded, Audio 6 points 1 month ago

DLLs can use different versions of stdlib on Windows. So as long as your public API is C (with
possible a client side compiled C++ wrapper to make it nicer to use), ABI breakage is a
nonissue.
permalink embed save parent report reply

[–] manugildev 12 points 1 month ago

IMO, people want to stick to C++ but they don't want the new features, they seem patches.

C++ has made lots of mistakes during the years, bad design choices that can not be break because that
would require a change of the ABI, and therefore breaking the language.

Is hard that a 40yo language evolves into a modern one, even more if so many legacy systems and
programmers rely on it.
permalink embed save parent report reply

load more comments (16 replies)

[–] meneldal2 4 points 29 days ago

while the problem with unique_ptr is indeed annoying

Isn't that entirely the implementation fault? As is, the standard itself doesn't make it inefficient, the
implementation just doesn't deal with it well.
permalink embed save parent report reply

load more comments (8 replies)

[–] foonathan 9 points 1 month ago

A big concern are companies that only sell compiled C++ code and have since then gone out of
business, so nobody has the source code anymore to recompile. If there is an ABI break, people using
such products are basically screwed.
permalink embed save parent report reply

[–] kkert 23 points 1 month ago

If there is an ABI break, people using such products are basically screwed.

No, they are not. It is always possible to wrap the functionality with your old compiler into a more
stable interface. Either put C ABI around your component, wrap it in separate executable altogether,

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhr2p37/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SkoomaDentist
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhr2wf7/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/arclovestoeat
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqe9wg/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SkoomaDentist
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhr0e8l/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/manugildev
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhosee0/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/meneldal2
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhwo4cc/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/foonathan
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhosfux/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kkert

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 30/48

expose it over some interface like DBUS or COM, or just make it a web service.
permalink embed save parent report reply

load more comments (3 replies)

[–] mcencora 34 points 1 month ago

They are screwed regardless of ABI break - recent types of security vulnerabilities like
spectre/meltdown are best proof.
permalink embed save parent report reply

[–] manugildev 17 points 1 month ago

They only have to use old compilers, that's it.
permalink embed save parent report reply

load more comments (1 reply)

[–] BenFrantzDale 5 points 1 month ago

Would it be possible to have a translation layer between ABIs? At least if the library boundary
weren’t performance-critical?
permalink embed save parent report reply

[–] mjcaisse 3 points 1 month ago

No. Said companies just don't update compilers. Industry isn't usually as eager to move compilers in
a shipping product as many people would have you think.
permalink embed save parent report reply

load more comments (1 reply)

[–] kalmoc 3 points 1 month ago

I think the whole std::unique_ptr problem is highly overrated. However, there are easily a dozen small
and big things that could be improved through the standard library (both in terms of specification and
implementation) that are blocked on ABI stability.

Now, I'd prefer to have to deal with a single ABI break point across the eco system every 9-12 years
than multiple ABI breaks over time or total stagnation.
permalink embed save parent report reply

load more comments (35 replies)

[–] tvaneerd C++ Committee, lockfree, PostModernCpp 20 points 1 month ago

See Bryce, I told you C++ was done. (well 20 at least)
permalink embed save report reply

[–] sempuki 9 points 1 month ago

Post Modernist. Creative director.
permalink embed save parent report reply

load more comments (1 reply)

[–] funnypigrun 29 points 1 month ago

C++20 was just finished but I’m already excited for C++23! The future of C++ looks promising.
permalink embed save report reply

[–] GerwazyMiod 4 points 1 month ago

Right? Executors and Networking!
permalink embed save parent report reply

load more comments (1 reply)

[–] [deleted] 13 points 1 month ago

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpazs8/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/mcencora
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhowcr3/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/manugildev
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoyt5d/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/BenFrantzDale
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqc3pr/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/mjcaisse
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqu4w6/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kalmoc
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrz5cm/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/tvaneerd
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoyp8f/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/sempuki
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp38gk/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/funnypigrun
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhompea/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/GerwazyMiod
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpvyl9/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 31/48

I might be stupid, so can anyone explain to me the difference between "move = bitcopies" by Niall Douglas and
"Object relocation in terms of move plus destroy" by Orthur O'Dwyer? From what I can tell, both are talking about
"destructive move operations". Also what's the reason for this poll? I get that the papers have different
approaches, but aren't they solving the same problem?
permalink embed save report reply

[–] Dragdu 8 points 1 month ago

One aims at providing library facilities that user's can opt-in and implementations can leverage, while the
other wants to modify how a fundamental operation works in the language.
permalink embed save parent report reply

[–] [deleted] 2 points 1 month ago

Okay, that makes sense. Still, why would they progress independently?
permalink embed save parent report reply

[–] 14ned LLFIO & Outcome author | Committees WG21 & WG14 3 points 1 month ago

P1144 enables standard library containers to be less stupid with collections of some types. It does
not modify ABI of such types otherwise e.g. return of them from functions.

P1029 is the opposite almost: types opted into move bitcopying get improved codegen i.e. ABI
break over if they were not opted in.

Both proposals enable standard library containers to be less inefficient, however P1144 produces
superior efficiency improvements to P1029 for standard library containers.

As both proposals are orthogonal (one never breaks ABI, the other explicitly is for breaking ABI),
EWG-I has voted twice now to recommend they be progresed separately. P1144 has gone to EWG,
P1029 should go to EWG next meeting I would expect.
permalink embed save parent report reply

[–] [deleted] 2 points 1 month ago

Thanks for the explanation. That clears it up.
permalink embed save parent report reply

[–] nemanjaboric 3 points 1 month ago

The way I see this is since we don't have any evidence if one of them would make the way into the
language and since they are sufficiently different (they take completely different approaches) it
doesn't make much sense to try to shoehorn them together. Similarly, waiting to see if one would fail
and then pursuing the other may be a waste of time.
permalink embed save parent report reply

load more comments (1 reply)

[–] hachanuy 46 points 1 month ago

Many in the committee are interested in considering targeted ABI breaks when that would signify significant
performance gains.

That raised hope a bit then this struck

Notably, the proposed epochs language facility received no consensus to proceed.

Nooo...
permalink embed save report reply

[–] famastefano 23 points 1 month ago

Well they said that epochs have some issues �� �

It's a big proposal after all, it's hard to think about every single possible problem.
permalink embed save parent report reply

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p1029r3.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1144r4.html
https://github.com/cplusplus/papers/issues/359#issuecomment-585854154
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhosdtv/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Dragdu
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpdxjg/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpf9iq/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/14ned
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqbbnj/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrq6gm/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/nemanjaboric
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq6o2a/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/hachanuy
https://wg21.link/p1881
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhonhrd/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/famastefano
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhonvpz/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 32/48

[–] hachanuy 15 points 1 month ago

I know the committee wouldn't reject it for no reason but it still stings that there's a major problem with
epoch. I hope that can be fixed when more understanding about module and concept is gained.
permalink embed save parent report reply

[–] chuk155 graphics engineer 14 points 1 month ago

A unready proposal accepted into the standard is forever bad. There being large scale issues with
the design is in inevitable, its trying to do a very large thing. In fact, if it did somehow sail through
something is deeply wrong with the committee. And there are still 1-2 years worth of meetings for it
to make it into C++23, so don't give up hope just because it isn't perfect from the get go.
permalink embed save parent report reply

[–] HappyFruitTree 2 points 1 month ago

Does "no consensus to proceed" mean they will look at it again?
permalink embed save parent report reply

[–] chuk155 graphics engineer 3 points 1 month ago

It means "We didn't reject it but don't think its ready for the next committee in the process"
(Language Evolution in this case).

So yes, come next meeting they will hopefully look at it again, especially if it has received
changes in that time.
permalink embed save parent report reply

[–] D_0b 11 points 1 month ago

If one TU thinks C<T>is true, but another TU in a later epoch thinks C<T> is false, that easily leads to ODR
violations.

Can anyone give a concrete example how this can happen?
permalink embed save report reply

[–] D_0b 9 points 1 month ago

A situation where the break is happening is probably with the first example in the paper removing implicit
conversions for builtin types.

if you have a concept that tries to call a function that would use implicit conversion in an old TU it will be
true, in a new TU it will be false.
permalink embed save parent report reply

[–] SuperV1234 2 points 1 month ago

(paper author here) This is a possible outcome, but we could also decide to make epoch restrictions
behave as a glorified -Werror switch. As an example, we could stop compilation immediately when an
implicit conversion is detected rather than change the outcome of SFINAE or overload resolution.
permalink embed save parent report reply

load more comments (6 replies)

[–] bigcheesegs Tooling Subgroup (SG15) Chair | Clang dev 9 points 1 month ago

The example I gave during the discussion was std::is_constructable_v . One of the examples in
the paper was removing implicit conversion. The problem with this is that you have three options for the
behavior of templates, and all of them are bad.

epoch 2023; // Module-level switch
export module Particle;
import <type_traits>;

export struct Particle {

javascript:void(0)
https://old.reddit.com/user/hachanuy
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoo0xc/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/chuk155
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhps1u8/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/HappyFruitTree
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhtnw1q/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/chuk155
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhtwuyv/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/D_0b
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhonnol/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/D_0b
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhouidh/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SuperV1234
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhslry8/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/bigcheesegs

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 33/48

 Particle(float x, float y);
 float x, y;
};

export void example() {
 if constexpr (std::is_constructible_v<Particle, double, double>)
 Particle(1.2, 4.8);
}

1. Use the epoch of the instantiation context: ODR violation when there's another instantiation in a
previous epoch.

2. Use the epoch of the template definition: The trait lies, and you get an error even though you checked
first.

3. Use the epoch of the owning module of Particle : The behavior of the language doesn't depend
on the epoch of the current module. Also more complicated with mixing multiple types from different
epochs.

This isn't a problem for every possible change you could introduce in an epoch, but it is for everything
interesting I've seen discussed.
permalink embed save parent report reply

[–] Lyberta 3 points 1 month ago

I think this can be fixed by breaking the assumption of TUs being independent or require all potentially
ODR violating code being marked and put into separate section that linker must check for duplicates
and error out if dupes exist.
permalink embed save parent report reply

[–] bigcheesegs Tooling Subgroup (SG15) Chair | Clang dev 2 points 1 month ago

I think this can be fixed by breaking the assumption of TUs being independent

Not sure what you mean by this.

require all potentially ODR violating code being marked and put into separate section that linker
must check for duplicates and error out if dupes exist.

Almost all code is potentially ODR violating, and that just makes your code super fragile. Spooky
action at a distance is bad.
permalink embed save parent report reply

[–] MartenBE 3 points 1 month ago

Is there a movement to address the issue epochs tried to resolve, or will it be ignored for the time being?
permalink embed save parent report reply

[–] SuperV1234 2 points 1 month ago

I think you're missing one options we briefly mentioned in EWGI:
https://www.reddit.com/r/cpp/comments/f47x4o/_/fhslry8

It has it's own weirdness though, because the trait would evaluate to true but you wouldn't be able to
invoke a constructor, which is inconsistent...
permalink embed save parent report reply

[–] therealcorristo 6 points 1 month ago*

Say you have a header file that defines the following struct
struct foo { void bar() { std::puts("bar called"); } };

and a concept that requires that a function bar can be called on a const object. Then any TU
compiled with current defaults will see foo::bar as a non-const member function, i.e. the concept is not

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpamo6/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Lyberta
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpir2q/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/bigcheesegs
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq79iv/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/MartenBE
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhs4g2m/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SuperV1234
https://www.reddit.com/r/cpp/comments/f47x4o/_/fhslry8
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhslzp6/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/therealcorristo

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 34/48

satisfied, while any TU using a new epoch that makes member-functions const by default will see
foo::bar as a const member function, i.e. the concept is satisfied in that TU.

permalink embed save parent report reply

[–] matthieum 16 points 1 month ago

This would indeed be terrible, however I would argue that this is not how epochs should work.

Instead, I would argue that the rules that apply to an item should be the rules that apply to the module
the item is defined in. That is:

If foo is defined in a C++20 module, then it follows C++20 rules even when used in a C++23
module.
If foo is defined in a C++23 module, then it follows C++23 rules even when used in a C++20
module.

Thus in this case, if C++23 "infer" constness and C++20 doesn't, this does not lead to issues -- no
matter where it is used, a single item obeys a single set of rules.
permalink embed save parent report reply

[–] therealcorristo 2 points 1 month ago

You're probably right, I missed that foo is either reexported in both modules that include the
header, in which case the ODR violation already happens at that point if the different epochs cause
the definition of bar to differ, or foo is included in an implementation file of at least one of the
modules in which case it has module linkage and the two foo s aren't the same struct.
permalink embed save parent report reply

[–] matthieum 7 points 1 month ago

On the other hand, such a scheme does require a compiler which implements all rules. It's
already the case today -- with compilers having switches to choose the standard version -- so
doesn't seem a problem, but it does mean compilers are bound to only get bigger and bigger
over time.

Also, there are also questions as to what rules should template use:

template <typename T>
void quadsort(T* begin, T* end);

If quadsort is defined in C++20 module but is instantiated with a T from a C++23 module,
which set of rules applies? Can this lead to issues?

Note: in Rust, epochs are only used for syntactic constructs -- mainly introduced new keywords
-- which is super easy. Having epochs impact semantics or ABI is very much untested ground.
permalink embed save parent report reply

[–] [deleted] 8 points 1 month ago

Having epochs impact semantics or ABI is very much untested ground.

Epochs (the proposed C++ ones, not rust ones) wouldn't touch ABI, but I believe "we can
mess with semantics" was advertised as one of the strong points. It's definitely hairy.
permalink embed save parent report reply

load more comments (1 reply)

load more comments (2 replies)

[–] D_0b 7 points 1 month ago

from what I understood of epochs, if a struct is defined in the new epochs, they are not suppose to "see"
them as const but actually be marked const. (so both old and new will see them as const)

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhonxdf/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/matthieum
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhosf9a/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/therealcorristo
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhosv4p/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/matthieum
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhothd6/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhov6nz/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/D_0b

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 35/48

on the other hand if foo is defined in an old epoch it is as it is, and both old and new will see it as non
const.
permalink embed save parent report reply

load more comments (8 replies)

[–] jcelerier ossia score 32 points 1 month ago

However, concerns were raised about security and usability problems, so the ability to execute arbitrary code
at compile-time was rejected.

I wonder why it's a problem for C++ and not for so many other languages - every interpreted one for starters, but
also things like F#, Zig...
permalink embed save report reply

[–] SeanMiddleditch Game Developer 4 points 28 days ago

Languages like Zig have a fraction of the userbase and possibly zero devs who actually care about build
environment security and such.

C++ is used by orders of magnitude more people and in more sensitive environments, and there are folks in
the committee who deeply care about things like whether a third-party library could hijack an internal build
node or whether an internal dev could use it to copy CI machine tokens/passwords or so on.

(I don't think F# has compile-time code arbitrary code execution with I/O... does it?)
permalink embed save parent report reply

[–] foonathan 8 points 1 month ago

Another huge concern is related to cross compiling. Currently, the constexpr interpreter emulates the target
platform completely. The circle model executes native code. This means that when cross compiling, sizeof()
in compile time and runtime code might have different values, floating point evaluation differs, etc. etc.
permalink embed save parent report reply

[–] seanbaxter 32 points 1 month ago

Not true. Circle adopts the architecture and abi of the target. sizeof reflects the target. The only cross
compilation complication is executing foreign function calls on the host. The committee should have
decided to not include foreign function calls, and they would have gotten everything else, like full C/C++
library access at compile time.
permalink embed save parent report reply

load more comments (8 replies)

load more comments (2 replies)

[–] tcanens cppreference.com | LWG 9 points 1 month ago*

A slightly fuller summary of what we did in LWG, in addition to what was mentioned above:

Renaming galore:

safe_range was renamed to borrowed_range (likewise for safe_iterator_t etc.)
default_constructible was renamed to default_initializable
all_view was not really a view type and was renamed to views::all_t .
leap was renamed to leap_second , and link was renamed to time_zone_link
*_default_init was renamed to *_for_overwrite
ispow2 , ceil2 , floor2 and log2p1 were renamed to has_single_bit ,
bit_ceil , bit_floor and bit_width , respectively.

Range algorithm result types were renamed with the old names becoming aliases, e.g.,
copy_result became in_out_result ; partition_copy_result became
in_out_out_result .

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoofo9/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/jcelerier
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoor8v/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SeanMiddleditch
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi23cxl/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/foonathan
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoqfzg/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/seanbaxter
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhork5s/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/tcanens

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 36/48

span got more things ripped out and other things adjusted

cbegin and friends are removed
tuple-like protocol (including structured binding support) for fixed-size spans is removed
fixed-size span's constructor from dynamically-sized ranges is now explicit (size mismatch is still
undefined)
construction from std::array now allows qualification conversions

std::boolean was removed and replaced with an exposition-only boolean-testable concept.
We added ranges:: versions of for_each_n , clamp and sample . We found an issue with the
proposed ranges::shift_left and ranges::shift_right so they had to be kept back.
Lots of bug fixes. We applied 109 (!) issue resolutions directly. A list can be found here - everything in
"Voting" or "Immediate" status was applied. A number of the adopted papers also fall into this category. A
few notable ones not already mentioned:

has_strong_structural_equality is removed now that "strong structural equality" is no
longer a thing.
std::pair and std::array are guaranteed to be usable as the type of non-type template

parameters (if the element type(s) are themselves usable as such)
rvalue stream operations now preserve the type of the stream, so that you can write
(std::ostringstream() << "i = " << i).str()

permalink embed save report reply

[–] kalmoc 3 points 29 days ago

ispow2, ceil2, floor2 and log2p1 were renamed to has_single_bit, bit_ceil, bit_floor and bit_width,
respectively.

Why?

tuple-like protocol (including structured binding support) for fixed-size spans is removed

Why?
permalink embed save parent report reply

[–] tcanens cppreference.com | LWG 11 points 29 days ago

log2p1 collides with an IEEE754 function that has completely different semantics. More generally,
LEWG wanted to later extend these functions to things like std::byte which have no mathematical
operations, so the previous names are not ideal.

There's a late-breaking design issue with the definition of
tuple_element_t<0, span<int, 42>> , and LEWG decided to remove it rather than trying to fix

it in <10 hours.
permalink embed save parent report reply

load more comments (1 reply)

[–] barchar MSVC STL Dev 4 points 28 days ago

because we love changing spelling. It's fun!
permalink embed save parent report reply

load more comments (1 reply)

[–] JoelFilho 8 points 1 month ago

Congratulations to all involved!

I definitely can't wait to write my libraries in modules without ugly SFINAE template code and cryptic compiler
errors.

Also, since I'm unfamiliar with how the committee works, a (hopefully inoffensive) question:

https://cplusplus.github.io/LWG/lwg-status.html
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhwi7i2/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kalmoc
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhwoc4f/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/tcanens
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhwxh0x/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/barchar
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi1gmfa/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/JoelFilho

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 37/48

SG12 also collaborated with the MISRA standard for coding standards in embedded systems to help them
update the guidelines for newer C++ revisions.

The freestanding library took a few steps forward, with some interesting proposals, including Freestanding
Language: Optional ::operator new

One of the biggest decisions was on Low-Cost Deterministic C++ Exceptions for Embedded Systems which
got great reactions. We will probably hear more about it!

Since embedded systems have some importance as an unique field for the language, how much more would the
committee need to create a dedicated embedded/freestanding study group?
permalink embed save report reply

[–] ben_craig freestanding 8 points 1 month ago

Arguably, SG14 (Low Latency) covers a lot of this territory. I tend to present my freestanding papers there
first before going to the respective incubators.
permalink embed save parent report reply

[–] JoelFilho 3 points 1 month ago

Thanks for answering. I thought Low Latency focused more on fields like high-frequency trading, but it
makes sense that it could also do embedded without requiring a new SG.

Also, thanks for your work on the freestanding proposal. Coming from embedded, I can't count the
amount of "C++ shouldn't be used on embedded"-like thinks I've heard because of the usual complaints
about heap and exception usage in the STL. Hopefully the implementation of these proposals will
increase the adoption of modern C++ in the future of embedded software development.
permalink embed save parent report reply

load more comments (2 replies)

[–] Adverpol 9 points 1 month ago

Really excited to see the proposed changes. Really bummed that it might take 6 years before we get pattern
matching. 6 years just feels crazy long, I mean it's a substantial part of the total time-frame of my career as a
C++ dev.
permalink embed save report reply

[–] c0r3ntin 4 points 29 days ago

My money is on it shipping in 23
permalink embed save parent report reply

[–] Adverpol 3 points 28 days ago

My hopes and dreams are ;)
permalink embed save parent report reply

[–] seanbaxter 18 points 1 month ago

I implemented pattern matching in my compiler. Took all of two weeks.

https://github.com/seanbaxter/circle/blob/master/pattern/pattern.md

If they're "looking for implementation experience" they aren't doing a good job, since I've had it ready since
September and nobody from wg21 has asked me one thing about it. If you want to see advanced features,
the future of C++ does not belong to ISO.
permalink embed save parent report reply

[–] sempuki 13 points 1 month ago

Clang could implement a non standard, non portable, unstable version in a couple weeks too. Let us
know when you get your first thousand full time developers -- or your first billion dollar user. Snarky
snipes from the sidelines aren't helpful. Software is hard.

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp7abd/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/ben_craig
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhsj59f/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/JoelFilho
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhvzine/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Adverpol
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpvxvl/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/c0r3ntin
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhx1nib/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Adverpol
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhzzbhr/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/seanbaxter
https://github.com/seanbaxter/circle/blob/master/pattern/pattern.md
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpzvxv/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/sempuki

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 38/48

permalink embed save parent report reply

[–] frog_pow 8 points 1 month ago

Circle looks very impressive, I wish it had been given more serious consideration, hopefully it will be
given a more fair look again in the future..
permalink embed save parent report reply

[–] Adverpol 3 points 29 days ago

Wow, that looks awesome. It also makes 6 years that much harder to swallow. Even if, like u/sempuki
says, this is not battle-tested, a usable implementation seems to me to be the first step on that road. If
this would be like rust-nightly then we could actually have people use it and get real-world feedback,
even if if's only for hobby projects.
permalink embed save parent report reply

load more comments (1 reply)

[–] kalmoc 31 points 1 month ago

Given the current state of std::regex is such that we cannot fix either its interface or its well-known
performance issues, a number of volunteers agreed to bring a paper to deprecate std::regex at a future
meeting.

So deprecation and eventual removal are preferable to fixing, but breaking ABI? That has to be a joke right?
permalink embed save report reply

[–] sempuki 8 points 1 month ago

Deprecation will last a long time.
permalink embed save parent report reply

[–] Dascandy HippoMocks/cpp-dependencies/Evoke/Pixel dev 5 points 1 month ago

Explicitly not removal.
permalink embed save parent report reply

[–] mort96 11 points 1 month ago

The eventual goal of a depreciation surely is removal, right? Like how auto_ptr has been deprecated
forever and finally got removed in 17
permalink embed save parent report reply

[–] Dascandy HippoMocks/cpp-dependencies/Evoke/Pixel dev 13 points 1 month ago

The goal with this deprecation is to make clear to everybody that:

It has issues. Very big issues. Big enough that you should not want to use this in any new
code, and consider removing it in existing code.
We know it has issues. It's not news, at least for most of the issues.
We know that we cannot get any fix through the whole committee. We've tried a few times
and in some different ways.

Given that this is not a good solution and we know you should never want to use it, it should be
deprecated.

It cannot be removed, until we have a replacement. It will only be removed after the replacement
has had time to replace people's use of std::regex.

Right now though, we really want people to understand that you shouldn't use this, and we're not
helped (in fact - the replacement would take longer!) if people keep adding suggestions to fix it.

Think auto_ptr in a hypothetical C++08. Yes, it'd get a replacement in 11, and it would be removed
in 17, but we'd want to tell you "don't use this, and don't submit papers with fixes" in 08.

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhuekbl/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/frog_pow
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq5eo6/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Adverpol
https://old.reddit.com/u/sempuki
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhwuuru/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kalmoc
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhozn9f/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/sempuki
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp3bcg/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Dascandy
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpf9l3/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/mort96
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq4dhg/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Dascandy

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 39/48

This paper's goals are the deprecation. Removal is a different paper, the replacements are different
papers.
permalink embed save parent report reply

[–] PeterBrett SG16; CAD software dev 5 points 1 month ago

Is it okay if I cut & paste this into my draft paper?
permalink embed save parent report reply

[–] Dascandy HippoMocks/cpp-dependencies/Evoke/Pixel dev 3 points 1 month ago

Already have a draft. Will send it to you and Hana in a few hours.
permalink embed save parent report reply

[–] kalmoc 3 points 1 month ago

Why do we need a regex library in the standard at all?
permalink embed save parent report reply

[–] PeterBrett SG16; CAD software dev 10 points 1 month ago

Why do we need a regex library in the standard at all?

Because I have spent ~50% of my software engineering career fixing obscure buffer
overruns in hand-written lexers which didn't use regular expressions because the author
hated adding dependencies.
permalink embed save parent report reply

load more comments (3 replies)

[–] c0r3ntin 3 points 1 month ago

Except very rare cases, depreciations are not intended to lead to removal
permalink embed save parent report reply

[–] STL MSVC STL Dev 12 points 1 month ago

That was a fairly accurate description of the status quo circa C++98-11, but nowadays,
deprecated features are regularly checked for being candidates for removal, and many C++17-
deprecated features were duly removed in C++20. Which is good.
permalink embed save parent report reply

[–] c0r3ntin 5 points 1 month ago

We talked about this this week and I think there is some consensus (no poll) that nothing
should ever be removed unless actively harmful (like auto_ptr).

I still don't know how I feel about that.

A few months ago, a proposal I had to mark the thing in annex D with deprecated failed
spectacularly
permalink embed save parent report reply

[–] GerwazyMiod 5 points 1 month ago

Kill it with fire, start fresh with CTRE.
permalink embed save parent report reply

load more comments (2 replies)

[–] James20k P2005R0 7 points 1 month ago

Nope, std::regex is apparently completely unfixable without major ABI problems
permalink embed save parent report reply

[–] ROYAL_CHAIR_FORCE 6 points 1 month ago

Sorry might be a stupid question, but what are the problems with the regex API?

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq962s/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/PeterBrett
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqty09/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Dascandy
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrr4mo/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kalmoc
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrvgq9/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/PeterBrett
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrx7v2/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/c0r3ntin
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqyvf9/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/STL
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhr3yzc/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/c0r3ntin
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrslfj/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/GerwazyMiod
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqb1mu/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/James20k
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp28kb/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/ROYAL_CHAIR_FORCE

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 40/48

permalink embed save parent report reply

[–] Dascandy HippoMocks/cpp-dependencies/Evoke/Pixel dev 19 points 1 month ago

Searching for only á will get you í too. Maybe. Sometimes ý too. Or hit á three times. And find a too.
But not always. Could find ç. Or some chinese characters and emoji.

The actual performance is... pretty bad.

It supports 7 language variants.

None of this can be touched on at least one compiler without a total ABI break.
permalink embed save parent report reply

[–] STL MSVC STL Dev 10 points 1 month ago

It supports 7 language variants.

That's an egregious exaggeration! How dare you besmirch the good name of basic_regex?
There are only 6 grammars: ECMAScript, basic, extended, awk, grep, egrep.

(This is a joke - there are indeed way too many grammars and only ECMAScript should exist.)
permalink embed save parent report reply

[–] [deleted] 7 points 1 month ago

The ECMA grammar, at least as adopted by std::regex , doesn't support multiline
patterns as specified in std::regex::multiline . This made me resort to patterns
like (?:\r|\r\n|\n|$) instead of just $ which worked in boost::regex .

For the record, I agree that having 97 grammars is way too many. I'm just playing the devil's
advocate.
permalink embed save parent report reply

load more comments (4 replies)

load more comments (1 reply)

[–] Lyberta 7 points 1 month ago

That's because you're trying to use std::regex with Unicode which was never supported in
the first place.
permalink embed save parent report reply

load more comments (1 reply)

load more comments (1 reply)

[–] HappyFruitTree 3 points 1 month ago

Removal doesn't necessarily break code because implementations could continue to support it indefinitely. A
breaking change would force code to break.
permalink embed save parent report reply

load more comments (1 reply)

load more comments (1 reply)

[–] Sartrean010 7 points 1 month ago

Can members of the public show up just to observe if you don’t represent a company or organization?
permalink embed save report reply

[–] 14ned LLFIO & Outcome author | Committees WG21 & WG14 12 points 1 month ago

You need to register beforehand so they can allocate space for you, but otherwise, yes.
permalink embed save parent report reply

[–] Sartrean010 3 points 1 month ago

Cool. :D

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp8kwu/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Dascandy
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpfjc6/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/STL
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqwt3f/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrtxvp/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Lyberta
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpizqj/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/HappyFruitTree
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhtq9wc/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Sartrean010
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpva09/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/14ned
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqc1u2/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Sartrean010

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 41/48

permalink embed save parent report reply

[–] Ictogan 6 points 1 month ago

Did pr1105 make any progress? I'd really like if things that are common practice for embedded development like
the lack of exceptions or rtti would get adopted by the standard.
permalink embed save report reply

[–] foonathan 14 points 1 month ago

Sort of, the freestanding proposals made progress, so more and more stuff of the standard library can be
available on certain embedded platforms. This subset does neither exceptions, nor heap allocations or RTTI.

LEWG also voted to make a lot more library functions noexcept (which isn't a semantic change; those
functions weren't throwing before, they just weren't noexcept for ... reasons).
permalink embed save parent report reply

[–] ben_craig freestanding 8 points 1 month ago

Bad news: I have no plans on making further revisions to the P1105 omnibus paper.

Good news: The respective pieces of P1105 will be getting papers. In particular, P2013 (Optional ::operator
new) has been received favorably (no against votes at all!). I was instructed to write some wording and bring
it back to EWG.

On the library front, both P1641 and P1642 were received well in Library Incubator. These are some of the
"little pieces" of P0829.
permalink embed save parent report reply

[–] tambry 6 points 1 month ago

treat initialization of a bool from a pointer as narrowing

Links to the same paper as concept value caching.

But this is good. A co-worker recently wrote a bug that would have been prevented by this.
permalink embed save report reply

load more comments (1 reply)

[–] adamgetchell 26 points 1 month ago

Really disappointed with the decision re: Circle. The rationale, if I understand correctly, “the compiler might
execute untrusted code”, seems to be an orthogonal problem that already exists with current compilers. [1] [2]

Seems like a heavy burden to impose on a meta programming framework.

Seems if that was truly an overriding concern there would be more work done on integrating formal verification.
[3]

Meanwhile, we as the community are losing out on true innovation that will make our programming immediately
better while keeping (and even improving) the “bare metal performance “ of C++.

[1] https://www.schneier.com/blog/archives/2006/01/countering_trus.html [2]
https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf [3] http://compcert.inria.fr
permalink embed save report reply

[–] SAHChandler C++ Bruja 20 points 1 month ago

I like also how that is the excuse given, when

1. No discussion of a threat model has been given
2. No one is verifying their build systems aren't executing untrusted code
3. No one is verifying their compiler wasn't built on a compromised machine

This "what about security concerns?" approach to arguments seems to always end in hand waving, but no
one ever discusses to what degree their threat model concern is (probably because with enough prodding

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqwwx0/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Ictogan
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1105r1.html
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhorwnc/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/foonathan
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhosnzm/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/ben_craig
https://wg21.link/p1105
https://wg21.link/p2013
https://wg21.link/p1641
https://wg21.link/p1642
https://wg21.link/P0829
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhsl4m0/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/tambry
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpb989/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/adamgetchell
https://www.schneier.com/blog/archives/2006/01/countering_trus.html
https://www.archive.ece.cmu.edu/~ganger/712.fall02/papers/p761-thompson.pdf
http://compcert.inria.fr/
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpg6bn/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SAHChandler

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 42/48

and poking you'd be able to point out that their perceived threat model is already a problem with the status
quo)
permalink embed save parent report reply

[–] Janos95 8 points 1 month ago

Having Code that can do foreign function calls at compile time is more dangerous if and only if one
never intends to run the code. Only compiling without running code seems like a very niche market to
me ;)
permalink embed save parent report reply

load more comments (1 reply)

[–] sempuki 2 points 1 month ago

The committee doesn't have the capacity to do proper security analysis. Hopefully that can change in
the near future.

Sign up your local security expert to attend.
permalink embed save parent report reply

[–] SAHChandler C++ Bruja 5 points 29 days ago

If they don’t have the capacity to do security analysis then maybe using the phrase “there are
security concerns” as a metaphorical boogie man should be dismissed.
permalink embed save parent report reply

[–] sempuki 2 points 29 days ago

Which do you prefer with regard to security, false positives, or false negatives?
permalink embed save parent report reply

[–] SAHChandler C++ Bruja 4 points 28 days ago

I prefer that people not use the phrase "security" as a boogie man argument and try to
express what their actual concerns are instead of trying to subjectively kill a paper because
they're afraid of it.
permalink embed save parent report reply

[–] sempuki 3 points 28 days ago

Good thing that's not what happened then.
permalink embed save parent report reply

[–] c0r3ntin 6 points 1 month ago

Beside security, it would be such a can of worm that we would not make progress on reflection in the next
decade. Circle model is basically 2 coexisting abstract machines.
permalink embed save parent report reply

[–] TheSuperWig 6 points 1 month ago*

Partially mutable lambda captures is listed twice. Improving Engine Seeding and Portable Distributions link to the
same paper.
permalink embed save report reply

[–] sempuki 4 points 1 month ago

Thank you, that is my mistake, but I think only u/blelbach can fix it.
permalink embed save parent report reply

[–] encyclopedist 5 points 1 month ago

While we are at it, it seems that sentenses about "freestanding" and "deterministic exceptions" are in the
wrong section. Currently these are in the "Machine learning" section.
permalink embed save parent report reply

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpuxzg/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Janos95
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqqt4e/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/sempuki
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhudpeb/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SAHChandler
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhy8uq3/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/sempuki
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhyv4zt/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/SAHChandler
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi1pgdz/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/sempuki
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi1u2fp/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/c0r3ntin
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqz622/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/TheSuperWig
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhong7r/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/sempuki
https://old.reddit.com/u/blelbach
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoqb32/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/encyclopedist
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhovj5s/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 43/48

load more comments (1 reply)

[–] TheSuperWig 6 points 1 month ago

Also "a new status_code facility"'s link has a typo. It links to p1208 instead of p1028.

cc /u/blelbach
permalink embed save parent report reply

load more comments (1 reply)

load more comments (1 reply)

[–] rlamarr 7 points 1 month ago

Hurray!
permalink embed save report reply

[–] johannes1971 5 points 1 month ago

Question: will the "inline in modules" rule affect actual inlining? I.e. will we revert from the current situation where
the compiler decides what to inline, to us having to specify this ourselves again?
permalink embed save report reply

[–] cpp_learner 3 points 1 month ago*

AFAIK compilers cannot inline a function that is defined in a different TU (translation unit), and a module is a
different TU, so it's not very different from the current situation.

A linker can of course choose to inline the function call at link time, though.
permalink embed save parent report reply

[–] johannes1971 2 points 1 month ago

My concern is functions that you currently define (physically) inline, like all those rather minimal setters
and getters that (I assume) are just going to be optimized away completely currently. Will we have to
mark those with the actual keyword inline when the same class definition appears in a module to
get inlining?
permalink embed save parent report reply

[–] smdowney 6 points 1 month ago

Yes, if you want the getters and setters inlined in the TU that imports them. Yes, this means a barrier
to simple migration to modules. It was judged to be worth it for ABI control.
permalink embed save parent report reply

[–] johannes1971 6 points 1 month ago

That's unfortunate. After years of teaching people that the inline keyword is not for inlining but
for ODR control we suddenly change direction, and the new direction requires them to make a
judgement call that we just spent a decade teaching them they can't and shouldn't make
themselves.

I don't quite understand why ABI control would be the reason, though. BMIs operate at the
source level, before translation takes place, correct? Where does ABI come into it?
permalink embed save parent report reply

[–] kalmoc 6 points 1 month ago

This gives you explicit control over wether the body of your member function (and
consequently everything used inside) becomes part of the ABI of your model or not.

Also, the meaning of inline hasn't really changed: "Just" the defaults did.
permalink embed save parent report reply

load more comments (1 reply)

[–] abizjak3 4 points 1 month ago

javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/TheSuperWig
https://old.reddit.com/u/blelbach
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrzeaw/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/rlamarr
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhomaoe/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/johannes1971
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpdkwt/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/cpp_learner
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpqree/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/johannes1971
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpvxzu/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/smdowney
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqh0bi/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/johannes1971
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrt0ok/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kalmoc
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhtrxos/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/abizjak3

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 44/48

In non-modules compilations, we deprecated cases where internal-linkage entities are used from external-
linkage entities. (These cases typically lead to violations of the One Definition Rule.)

Can someone explain what that means? Using internal linkage entities from external-linkage entities is
something I do very frequently, e.g. in a cpp file calling a function defined inline or in an unnamed namespace
from an implementation of a function with external linkage.
permalink embed save report reply

[–] zygoloid C++ Project Editor | Clang Maintainer 8 points 1 month ago

Sorry for the imprecision here; it's hard to express detailed technical rules in a terse way. The thing that is
deprecated is when the external linkage entity "exposes" the internal linkage entity -- either as part of its
type, or as part of the body of an inline function, or similar. Non-inline definitions in .cpp files aren't affected.
permalink embed save parent report reply

load more comments (1 reply)

[–] tpecholt 3 points 1 month ago

Considering the new rules about ABI breakage what would be the chance for a new unordered_map proposal? If
I understand correctly google has an implementation with order of magnitude better performance and same API
permalink embed save report reply

[–] barchar MSVC STL Dev 4 points 28 days ago

Well google's "flat_hash_map" is the one you usually want, and that's a different API than the std one (very
different pointer invalidation grantees for one). IMHO it's probably more realistic to get the "flat" hashmap
into the standard than it is to "fix" unordered_map. After all the flat hash map is a different type, with different
tradeoffs.
permalink embed save parent report reply

load more comments (4 replies)

[–] pjmlp 8 points 1 month ago

Congratulations to everyone!

Even if I hardly use it nowadays, thanks for making C++ better.
permalink embed save report reply

[–] kmhofmann https://selene.dev 23 points 1 month ago

Although there was strong interest in exploring how to evolve ABI in the future, we are not pursuing making
C++23 a clean ABI breaking release at this time. We did, however, affirm that authors should be encouraged
to bring individual papers for consideration, even if those would be an ABI break. Many in the committee are
interested in considering targeted ABI breaks when that would signify significant performance gains.

That sounds like an utterly, utterly disappointing and meaningless conclusion of this discussion.

Good luck C++ with this committee - you might need it! </s>
permalink embed save report reply

[–] sempuki 23 points 1 month ago

This does not reflect reality. Until this vote, anything that proposed ABI was summarily dismissed. This will
no longer be the case.
permalink embed save parent report reply

[–] BrainIgnition 17 points 1 month ago

Then maybe reword that paragraph? Currently it sounds like a divide and conquer strategy usually
employed in politics: Generally agree with the solution at hand, but reject all concrete steps, because
they're individually not worth it, etc. E.g.

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq7u1o/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/zygoloid
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqiwvm/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/tpecholt
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhsaxjd/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/barchar
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi1gujs/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/pjmlp
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhomviq/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kmhofmann
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoncje/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/sempuki
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoo9zr/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/BrainIgnition

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 45/48

We declined to forward a paper to enhance std::regex to better support Unicode due to severe ABI
restrictions

permalink embed save parent report reply

load more comments (12 replies)

[–] kmhofmann https://selene.dev 14 points 1 month ago

That's nice and all, but it's not enough, by far! The only sensible decision would have been to make a
clean ABI break for C++23.
(In my opinion, ABI shouldn't even matter at all w.r.t. the C++ standard.)

With the wording above ("interested in considering"), I predict no actual ABI breaks to ever happen in
practice.
permalink embed save parent report reply

load more comments (36 replies)

[–] c0r3ntin 12 points 1 month ago

It will be considered. And dismissed.
permalink embed save parent report reply

load more comments (5 replies)

load more comments (11 replies)

[–] Ameisen 3 points 1 month ago

How much time does it generally take you to write all that up?
permalink embed save report reply

[–] bigcheesegs Tooling Subgroup (SG15) Chair | Clang dev 11 points 1 month ago

We collaboratively edit this as a Google doc. This time it came together in 3 hours, but it's not like everyone
was writing for that long.
permalink embed save parent report reply

load more comments (4 replies)

[–] JulianHi93 3 points 1 month ago

Does the current Reflection proposal define support for Reflection in a way that I'm able to generate new types?
permalink embed save report reply

[–] andrewsutton 8 points 1 month ago

That's in the source code injection proposals, which are in the pipeline.
permalink embed save parent report reply

load more comments (1 reply)

[–] Morten242 3 points 28 days ago

Apparently c++20 also adds a function called emit(), which breaks the "emit" keyword used in Qt.

A reasonable proposal[0] to rename the function to avoid this conflict was proposed but it was voted against with
20 strongly against. Is there anywhere to see the reason for why it was voted down so hard?

[0] https://cplusplus.github.io/LWG/issue3399
permalink embed save report reply

[–] FabioFracassi C++ Committee | Consultant 5 points 27 days ago

Because the situation where this can cause breakage are extremely rare (and can not happen in existing
code, since the function is in a newly added header), and is almost trivial to work around should it arise.

Mitigation strategies exist within Qt (QT_NO_KEYWORDS), and using all lowercase macro names to define
"keywords", is so far outside the agreed upon customs that I guess many were unwilling to cut Qt any slack

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoq4kc/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kmhofmann
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhooiw5/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/c0r3ntin
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhosojr/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Ameisen
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhotruf/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/bigcheesegs
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpbpnp/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/JulianHi93
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhryo47/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/andrewsutton
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhs4ijc/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Morten242
https://cplusplus.github.io/LWG/issue3399
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi0abfm/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/FabioFracassi

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 46/48

there to (further) support such misuse.
permalink embed save parent report reply

load more comments (1 reply)

[–] tcanens cppreference.com | LWG 4 points 27 days ago

It was also not brought up until Friday, so the committee had less than 20 hours to decide before the 8pm
deadline for straw polls. This magnifies the risk of making a change significantly.
permalink embed save parent report reply

[–] ezoe 13 points 1 month ago

It's sad that the C++ SC decided to taint std::format with locale. 10 years ago, I noticed the necessity of char8_t
and they didn't listen, and now they not only think the locale is not considered harmful, but they also think locale
helps localization. In reality, it's quite opposite, the locale actively hinder the localization effort.

Yes, Yes, its just type specifier n, but the problem is, it is implicitly available and anyone can use it innocently and
it relies on the global locale of the time std::format object was initialized.

Well, it's not that bad. It just litter the standard library with yet another practically useless library after valarray,
iostream and std::regex.

I also think the coroutines is ugly and it should better be handled by static reflection, if it got all the insane
expressive power it aim to have currently that is.
permalink embed save report reply

[–] aearphen 6 points 1 month ago

Locales are supported via a very explicit opt-in and are occasionally useful e.g. for date/time formatting and
inserting digit separators.
permalink embed save parent report reply

[–] mort96 3 points 1 month ago

How do you opt in? If it uses the global locale from setlocale at all, it's not opt-in, at least not when
you're writing library code.
permalink embed save parent report reply

[–] PeterBrett SG16; CAD software dev 13 points 1 month ago

Locale is only ever used by format if you add a L modifier to your format substitution. There
are overload that let you pass the specific locale to be used as a parameter. It's fully opt-in.
permalink embed save parent report reply

load more comments (9 replies)

[–] foonathan 6 points 1 month ago

It's sad that the C++ SC decided to taint std::format with locale. 10 years ago, I noticed the necessity of
char8_t and they didn't listen, and now they not only think the locale is not considered harmful, but they
also think locale helps localization. In reality, it's quite opposite, the locale actively hinder the localization
effort.

The committee does think locale is harmful. There are papers discussing alternatives in the Unicode study
group.

Yes, Yes, its just type specifier n, but the problem is, it is implicitly available and anyone can use it
innocently and it relies on the global locale of the time std::format object was initialized.

There is also an overload where you pass in the locale as first parameter, instead of using the global one.

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi4rjhw/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/tcanens
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi5hprs/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/ezoe
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhoy1sq/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/aearphen
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpbxps/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/mort96
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhq6w6e/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/PeterBrett
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqumtm/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/foonathan

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 47/48

It's just convenience if you want to e.g. use , for floats.
permalink embed save parent report reply

[–] FabioFracassi C++ Committee | Consultant 9 points 1 month ago

std::format does not use locale by default... It uses it only if you explicitly provide one.
permalink embed save parent report reply

[–] cpp_learner 3 points 1 month ago

[formatter.requirements]:

The output shall only depend on t , fc.locale() , and the range
[pc.begin(), pc.end()) from the last call to f.parse(pc) .

[format.context]:

[fc.locale() returns] The locale passed to the formatting function if the latter takes one,
and std :: locale() otherwise.

IIUC, it means if a formatter decides to use locale, then it must default to std::locale() , a.k.a.
the global locale.
permalink embed save parent report reply

[–] aearphen 4 points 1 month ago

It will use `std::locale()` or a locale passed to a formatting function but only if you request it via a
separate format specifier. If you just do, say, `format("{:d}", 42)` locale won't be touched in any
way.
permalink embed save parent report reply

load more comments (1 reply)

[–] WafflesAreDangerous 7 points 1 month ago

It's just convenience if you want to e.g. use , for floats

Uhuh.. So the fact that Excels parsing of floating point numbers can in some contexts (opening CSV
files for example) depend on if my locales decimal separator is fullstop or comma is a "convenicence".
If this is the convenience you mean then I am .. ahem.. impressed.
permalink embed save parent report reply

load more comments (1 reply)

load more comments (1 reply)

[–] TuxSH 2 points 1 month ago

We clarified the meaning of static (and unnamed namespaces)

Link is dead.
permalink embed save report reply

[–] tcanens cppreference.com | LWG 5 points 1 month ago

Not yet alive, rather. This is a paper that is revised at the meeting and will be in the post-meeting mailing.
permalink embed save parent report reply

load more comments (1 reply)

[–] [deleted] 1 month ago

[deleted]

[–] tvaneerd C++ Committee, lockfree, PostModernCpp 10 points 1 month ago

That is unlikely to happen. I haven't even heard of anyone suggesting that.

You should be able to turn warnings into errors via your compiler?
permalink embed save report reply

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp4kxl/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/FabioFracassi
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhp6lls/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/cpp_learner
http://eel.is/c++draft/formatter.requirements#2.sentence-16
http://eel.is/c++draft/format.context#6.sentence-1
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpn9o7/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/aearphen
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhru3rh/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/WafflesAreDangerous
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhqm73t/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/TuxSH
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhpgeaj/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/tcanens
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhsibui/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/tvaneerd
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhrau4z/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)

3/18/2020 2020-02 Prague ISO C++ Committee Trip Report — � C++20 is Done! � : cpp

https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/ 48/48

load more comments (1 reply)

load more comments (1 reply)

[–] Suleyth 2 points 1 month ago

So, well, now what's left for C++20 to come out? Like, to actually be usable in compilers and such?
permalink embed save report reply

[–] FabioFracassi C++ Committee | Consultant 9 points 1 month ago

Compilers and implementations have already started releasing c++20 features based on the working draft,
and will continue to do so on their individual schedules... Concurrently ISO will do the balloting and red tape,
and unless something mayorly unexpected happens, officially release the standard at the end of the year.

My totally unsubstantiated guess is that by that time we will have at least one implementation which is
almost complete
permalink embed save parent report reply

[–] kalmoc 5 points 1 month ago

I would find that very suprising actually. There are so many big features in c++20 and if I'm not
completely mistaken, no compiler implements even a single one of them completely to spec and in a
production quality form.
permalink embed save parent report reply

[–] [deleted] 4 points 29 days ago

You are mistaken. https://en.cppreference.com/w/cpp/compiler_support
permalink embed save parent report reply

load more comments (6 replies)

[–] barchar MSVC STL Dev 6 points 28 days ago

Orc Peon voice: work work
permalink embed save parent report reply

load more comments (58 replies)

about
blog
about
advertising
careers

help
site rules
Reddit help center
reddiquette
mod guidelines
contact us

apps & tools
Reddit for iPhone
Reddit for Android
mobile website

<3
reddit premium
reddit coins
redditgifts

Use of this site constitutes acceptance of our User Agreement and Privacy Policy. © 2020 reddit inc. All rights reserved.
REDDIT and the ALIEN Logo are registered trademarks of reddit inc.

Advertise - technology

π

javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/Suleyth
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhs5kvu/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/FabioFracassi
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhsb3z4/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/kalmoc
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhttl8k/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://en.cppreference.com/w/cpp/compiler_support
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fhwzmcg/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://old.reddit.com/user/barchar
https://old.reddit.com/r/cpp/comments/f47x4o/202002_prague_iso_c_committee_trip_report_c20_is/fi1gwg4/
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://redditblog.com/
https://www.redditinc.com/
https://www.redditinc.com/advertising
https://www.redditinc.com/careers
https://old.reddit.com/rules/
https://www.reddithelp.com/
https://old.reddit.com/wiki/reddiquette/
https://old.reddit.com/help/healthycommunities/
https://old.reddit.com/contact/
https://itunes.apple.com/us/app/reddit-the-official-app/id1064216828?mt=8
https://play.google.com/store/apps/details?id=com.reddit.frontpage
https://old.reddit.com/premium/
https://old.reddit.com/coins/
https://redditgifts.com/
https://old.reddit.com/help/useragreement
https://old.reddit.com/help/privacypolicy
https://old.reddit.com/advertising

